ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Denver : Selbstverlag
    Associated volumes
    Call number: PIK N 456-97-0158
    In: Global Climate Change Response Program
    Type of Medium: Monograph available for loan
    Series Statement: Global Climate Change Response Program
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Petroleum Extension Service & Internat. Associat. of Drilling Contractors
    In:  Lessons in well servicing and workover - Lesson 3, 6th impression 1981, Austin, Texas, Petroleum Extension Service & Internat. Associat. of Drilling Contractors, vol. 339-350, no. 11, pp. 253-257, (ISBN 3-933346-037)
    Publication Date: 1971
    Keywords: Borehole geophys. ; Handbook of geophysics ; Dual Induction Latero log ; Dipmeter, ~analysis ; Density ; porosity ; caliper ; Borehole Compensated Sonic log
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-05
    Description: Reconstructions of global mean sea level from earlier warm periods in Earth’s history can help constrain future projections of sea level rise. Here we report on the sedimentology and age of a geological unit in central Patagonia, Argentina, that we dated to the Early Pliocene (4.69–5.23 Ma, 2σ) with strontium isotope stratigraphy. The unit was interpreted as representative of an intertidal environment, and its elevation was measured with differential GPS at ca. 36 m above present-day sea level. Considering modern tidal ranges, it was possible to constrain paleo relative sea level within  ±2.7 m (1σ). We use glacial isostatic adjustment models and estimates of vertical land movement to calculate that, when the Camarones intertidal sequence was deposited, global mean sea level was 28.4 ± 11.7 m (1σ) above present. This estimate matches those derived from analogous Early Pliocene sea level proxies in the Mediterranean Sea and South Africa. Evidence from these three locations indicates that Early Pliocene sea level may have exceeded 20m above its present level. Such high global mean sea level values imply an ice-free Greenland, a significant melting of West Antarctica, and a contribution of marine-based sectors of East Antarctica to global mean sea level.
    Description: Global mean sea level was 28.4 ± 11.7 m higher than at present during the Early Pliocene, at atmospheric CO2 levels of no more than 450 ppm and temperatures of 2–3 ∘C above preindustrial levels, suggests a reconstruction from Patagonia.
    Description: National Science Foundation (NSF) https://doi.org/10.13039/100000001
    Keywords: ddc:551 ; Geomorphology ; Palaeoclimate
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-06
    Description: Pore space controls the mechanical and transport properties of rocks. At the laboratory scale, seismic modeling is usually performed in relatively homogeneous settings, and the influence of the pore space on the recorded wavefields is determined by rock‐fluid interactions. Understanding this influence in dry rocks is instrumental for assessing the impact of pore topology on waves propagating in heterogeneous environments, such as volcanoes. Here, we simulated the propagation of shear waves as a function of pore space parameters in computational models built as proxies for volcanic rocks. The spectral‐element simulations provide results comparable with ultrasonic experiments, and the outcome shows that the size, shape, volume, and location of pores impact amplitudes and phases. These variations intensify in waveform coda after multiple scattering. Our results confirm that pore topology is one of the primary regulators of the propagation of elastic waves in dry rocks regardless of porosity.
    Description: Plain Language Summary: Pores control the non‐elastic behavior and, in general, the petrophysical and mechanical properties of rocks. Such properties are essential to assess potential resources such as aquifers and reservoirs or hazards posed by earthquakes, volcanoes, and constructions. The factors controlling the elasticity of rocks are texture, pore space and the fluids filling the pores. While volcanoes represent a key target for rock characterization, measuring and modeling these factors in volcanic rocks remains challenging due to their intrinsic heterogeneities. In this study, we analyzed how pore space parameters influence the overall elastic properties of rocks by changing one parameter at a time. We created synthetic samples and performed computational simulations that show the individual contribution of the amount, size, location, and shape on waveform phases and amplitudes. The findings demonstrate that we can constrain the pore space in heterogeneous rocks in simple but realistic scenarios. Our results are the first step to provide computationaly‐driven forward models of seismic signals in heterogeneous volcanic media, necessary to predict the responses of volcanic rocks to stress.
    Description: Key Points: Computational modeling quantifies the influence of pore space topology on S‐wave propagation in volcanic rocks. Amount, size and location of pores impact ultrasonic wave propagation in dry rocks independently of porosity. Path effects dominate the waveforms and depend on the location of the pores.
    Description: https://doi.org/10.17632/b5p54xtvv9.3
    Keywords: ddc:550.78 ; volcanic rocks ; pore space topology ; S-wave propagation ; computational modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-10
    Description: Understanding the temporal variability of plate tectonics is key to unraveling how mantle convection transports heat, and one critical factor for the formation and evolution of plate boundaries is rheological “memory,” that is, the persistence of weak zones. Here, we analyze the impact of such damage memory in global, oceanic‐lithosphere‐only models of visco‐plastic mantle convection. Self‐consistently‐formed weak zones are found to be reactivated in distinct ways, and convection preferentially selects such damaged zones for new plate boundaries. Reactivation of damage zones increases the frequency of plate reorganizations, and hence reduces the dominant periods of surface heat loss. The inheritance of distributed lithospheric damage thus dominates global surface dynamics over any local boundary stabilizing effects of weakening. In nature, progressive generation of weak zones may thus counteract and perhaps overcome any effects of reduced convective vigor throughout planetary cooling, with implications for the frequency of orogeny and convective transport throughout Wilson cycles.
    Description: Plain Language Summary: Understanding how and why the motion of the lithosphere changes over time is important since this is telling us how planets with a plate tectonic style of heat transport evolve by thermo‐chemical mantle convection. One important factor for the evolution of plate boundaries is hysteresis, that is, memory of past deformation. Inherited weak zones, such as sutures, and progressive weakening are well documented in the geological record. Convection with damage shows dynamical behavior that is different from pure plastic failure without memory, or homogenous lithosphere that is being newly broken. We analyze the impact of damage with global, oceanic‐lithosphere‐only models of plate‐like mantle convection. Weak zones that are formed in an initially homogenous material are found to be reactivated subsequently in distinct ways. Within our tectonic system model, convection preferentially selects pre‐damaged zones for new, active plate boundaries. This reactivation increases the frequency of plate reorganizations compared to models without damage, and also changes the time‐dependence of cyclic surface heat loss. In nature, the progressive generation of weak zones over planetary history may counteract and perhaps overcome any effects of reduced convective vigor during cooling. This has implications for the frequency of mountain building and understanding Wilson cycles.
    Description: Key Points: Results from global, plate‐generating convection models with damage. Self‐consistently formed persistent weak zones lead to more frequent plate reorganizations. Accumulation of weak zones might counteract decrease in convective vigor for tectonic variability.
    Description: NSF EAR
    Description: Division of Earth Sciences http://dx.doi.org/10.13039/100000160
    Description: https://geodynamics.org/resources/citcoms
    Description: https://doi.org/10.5281/zenodo.6546322
    Keywords: ddc:551 ; plate tectonics ; visco-plastic convection models
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...