ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-03-01
    Description: An observational and modeling study is conducted to investigate the structure of the Atlantic Meridional Mode (AMM) during the Atlantic hurricane season, and the relationship between AMM-related SST anomalies and environmental conditions that influence seasonal tropical cyclone activity. The observational analysis shows that during the Atlantic hurricane season the AMM exhibits a similar SST and low-level wind structure as during boreal spring (when the AMM is most active). Observed AMM SST variations are accompanied by air temperature and moisture anomalies that are limited to the boundary layer and an anomalous baroclinic circulation structure in the northern subtropical Atlantic with an anomalous lower-level cyclonic circulation residing under an anomalous upper-level anticyclone during a warm phase. This baroclinic structure contributes to a reduction in vertical wind shear over the tropical Atlantic that is dominated by changes in the upper-level flow. Two sets of model experiments were conducted, in which the NCAR Community Atmospheric Model version 3.1 (CAM3.1) was coupled to a slab ocean model or a data ocean model. In each experiment, the model was either initialized with or forced by AMM-like SST anomalies during boreal summer. The simulations yielded a similar spatial structure to that in the observations, including the baroclinic atmospheric circulation and associated reduction in vertical wind shear. The similarity between the modeled and observed AMM structures strongly suggests a causal relationship in which the AMM-like SST anomalies are responsible for generating environmental conditions that can strongly influence seasonal tropical cyclone variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-14
    Description: The connection between midlatitude Atlantic sea surface temperature (SST) anomalies and tropical SST variations during boreal summer and fall are investigated using a coupled general circulation model (GCM). This research follows on an observational study that finds that, using linear inverse modeling (LIM), predictions of boreal summer tropical Atlantic Meridional Mode (AMM) variations can be made with skill exceeding persistence with lead times of about one year. The LIM framework identified extratropical Atlantic SST anomalies as important precursors to the AMM variations. The authors have corroborated this finding using a general circulation model coupled to a slab ocean, which represents a completely different physical basis from the LIM. Initializing the GCM with the LIM-derived “optimal” SST anomaly in November results in a steady equatorward propagation of SST anomalies into the subtropics during the following boreal spring. Thereafter, the GCM suggests that two possible feedbacks propagate the SST anomalies farther equatorward and westward with minimal loss of amplitude: the dominant wind–evaporation–SST (WES) thermodynamic feedback and a secondary low-cloud–SST radiative feedback. This study shows that this result has strong seasonal dependence and consists of nonlinear interactions when considering warm and cold “optimal” conditions separately. One main finding is that oceanic dynamics are not essential to understanding extratropical–tropical interaction in the Atlantic basin. The authors also discuss the results of the study in context with previous studies investigating the extratropical forcing of tropical air–sea variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-15
    Description: Air–sea interaction over the North Pacific is diagnosed using a simple, local coupled autoregressive model constructed from observed 7-day running-mean sea surface temperature (SST) and 2-m air temperature TA anomalies during the extended winter from the 1° × 1° objectively analyzed air–sea fluxes (OAFlux) dataset. Though the model is constructed from 1-week lag statistics, it successfully reproduces the observed anomaly evolution through lead times of 90 days, allowing an estimation of the relative roles of coupling and internal atmospheric and oceanic forcing upon North Pacific SSTs. It is found that east of the date line, SST variability is maintained by, but has little effect on, TA variability. However, in the Kuroshio–Oyashio confluence and extension region, about half of the SST variability is independent of TA, driven instead by SST noise forcing internal to the ocean. Including surface zonal winds in the analysis does not alter this conclusion, suggesting TA adequately represents the atmosphere. Repeating the analysis with the output of two control simulations from a fully coupled global climate model (GCM) differing only in their ocean resolution yields qualitatively similar results. However, for the simulation employing the coarse-resolution (1°) ocean model, all SST variability depends upon TA, apparently caused by a near absence of ocean-induced noise forcing. Collectively, these results imply that a strong contribution from internal oceanic forcing drives SST variability in the Kuroshio–Oyashio region, which may be used as a justification for atmospheric GCM experiments forced with SST anomalies in that region alone. This conclusion is unaffected by increasing the dimensionality of the model to allow for intrabasin interaction.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-01
    Description: The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 1126–1147, doi:10.1175/JCLI-D-14-00285.1.
    Description: The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
    Description: We gratefully acknowledge funding provided by NSF to DS and MN (AGS CLD 1035325) and Y-OK and CF (AGS CLD 1035423) and by DOE to Y-OK (DE-SC0007052).
    Description: 2015-08-01
    Keywords: Atmosphere-ocean interaction ; Atmospheric circulation ; Boundary layer ; Cyclogenesis/cyclolysis ; Diabatic heating ; Extratropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...