ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-12
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 423 (2016): 19-33, doi:10.1016/j.chemgeo.2016.01.003.
    Description: Chromium (Cr) isotopes are an emerging proxy for redox processes at Earth’s surface. However, many geological reservoirs and isotope fractionation processes are still not well understood. The purpose of this contribution is to move forward our understanding of (1) Earth’s high temperature Cr isotope inventory and (2) Cr isotope fractionations during subduction-related metamorphism, black shale weathering and hydrothermal alteration. The examined basalts and their metamorphosed equivalents yielded δ53Cr values falling within a narrow range of -0.12±0.13‰ (2SD, n=30), consistent with the previously reported range for the bulk silicate Earth (BSE). Compilations of currently available data for fresh silicate rocks (43 samples), metamorphosed silicate rocks (50 samples), and mantle chromites (39 samples) give δ53Cr values of -0.13±0.13‰, -0.11±0.13‰, and -0.07±0.13‰, respectively. Although the number of high-temperature samples analyzed has tripled, the originally proposed BSE range appears robust. This suggests very limited Cr isotope fractionation under high temperature conditions. Additionally, in a highly altered metacarbonate transect that is representative of fluid-rich regional metamorphism, we did not find resolvable variations in δ53Cr, despite significant loss of Cr. This work suggests that primary Cr isotope signatures may be preserved even in instances of intense metamorphic alteration at relatively high fluid-rock ratios. Oxidative weathering of black shale at low pH creates isotopically heavy mobile Cr(VI). However, a significant proportion of the Cr(VI) is apparently immobilized near the weathering surface, leading to local enrichment of isotopically heavy Cr (δ53Cr values up to ~0.5‰). The observed large Cr isotope variation in the black shale weathering profile provides indirect evidence for active manganese oxide formation, which is primarily controlled by microbial activity. Lastly, we found widely variable δ53Cr (-0.2‰ to 0.6‰) values in highly serpentinized peridotites from ocean drilling program drill cores and outcropping ophiolite sequences. The isotopically heavy serpentinites are most easily explained through a multi-stage alteration processes: Cr loss from the host rock under oxidizing conditions, followed by Cr enrichment under sulfate reducing conditions. In contrast, Cr isotope variability is limited in mildly altered mafic oceanic crust.
    Description: Funding for this research was provided by Agouron Institute to XLW, National Science Foundation (NSF) EAR-0105927 and EAR-1250269 to JJA, and NSF EAR-1324566 to ES. NJP and CTR acknowledge funding from the Alternative Earths NAI.
    Description: 2017-01-12
    Keywords: Chromium isotopes ; Redox proxies ; Metamorphism ; Subduction ; Hydrothermal alteration ; Black shale weathering
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-10
    Description: © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth-Science Reviews 163 (2016): 323-348, doi:10.1016/j.earscirev.2016.10.013.
    Description: Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages have yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth’s ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.
    Description: LJR gratefully acknowledges the support of a Vanier Canada Graduate Scholarship. Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to CAP, BK, DSA, SAC, and KOK supported this work. This material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA15BB03A issued through the Science Mission Directorate. NJP receives support from the Alternative Earths NASA Astrobiology Institute. Funding from the NASA Astrobiology Institute, and the NSF FESD and ELT programs to TWL, and the Region of Brittany and LabexMER funding to SVL are also gratefully acknowledged. AB thanks the Society of Independent Thinkers.
    Keywords: Iron formations ; Black shales ; Eukaryotes ; Prokaryotes ; Evolution ; Trace elements ; Biolimitation ; Precambrian
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-29
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in American Journal of Science 318 (2018): 527-556, doi:10.2475/05.2018.04.
    Description: Iron speciation and trace metal proxies are commonly applied together in efforts to identify anoxic settings marked by the presence of free sulfide (euxinia) or dissolved iron (ferruginous) in the water column. Here, we use a literature compilation from modern localities to provide a new empirical evaluation of coupled Fe speciation and Mo concentrations as a proxy for pore water sulfide accumulation at non-euxinic localities. We also present new Fe speciation, Mo concentration, and S isotope data from the Friends of Anoxic Mud (FOAM) site in Long Island Sound, which is marked by pore water sulfide accumulation of up to 3 mM beneath oxygen-containing bottom waters. For the operationally defined Fe speciation scheme, ‘highly reactive’ Fe (FeHR) is the sum of pyritized Fe (Fepy) and Fe dominantly present in oxide phases that is available to react with pore water sulfide to form pyrite. Observations from FOAM and elsewhere confirm that Fepy/FeHR from non-euxinic sites is a generally reliable indicator of pore fluid redox, particularly the presence of pore water sulfide. Molybdenum (Mo) concentration data for anoxic continental margin sediments underlying oxic waters but with sulfidic pore fluids typically show authigenic Mo enrichments (2-25 ppm) that are elevated relative to the upper crust (1-2 ppm). However, compilations of Mo concentrations comparing sediments with and without sulfidic pore fluids underlying oxic and low oxygen (non-euxinic) water columns expose non-unique ranges for each, exposing false positives and false negatives. False positives are most frequently found in sediments from low oxygen water columns (for example, Peru Margin), where Mo concentration ranges can also overlap with values commonly found in modern euxinic settings. FOAM represents an example of a false negative, where, despite elevated pore water sulfide concentrations and evidence for active Fe and Mn redox cycling in FOAM sediments, sedimentary Mo concentrations show a homogenous vertical profile across 50 cm depth at 1-2 ppm. A diagenetic model for Mo provides evidence that muted authigenic enrichments are derived from elevated sedimentation rates. Consideration of a range of additional parameters, most prominently pore water Mo concentration, can replicate the ranges of most sedimentary Mo concentrations observed in modern non-euxinic settings. Together, the modern Mo and Fe data compilations and diagenetic model provide a framework for identifying paleo-pore water sulfide accumulation in ancient settings and linked processes regulating seawater Mo and sulfate concentrations and delivery to sediments. Among other utilities, identifying ancient accumulation of sulfide in pore waters, particularly beneath oxic bottom waters, constrains the likelihood that those settings could have hosted organisms and ecosystems with thiotrophy at their foundations.
    Description: DSH, TWL, NJP, and CRT acknowledge support from the NASA Astrobiology Institute under Cooperative Agreement No. NNA15BB03A issued through the Science Mission Directorate. Financial support was provided to NR and TWL by NSF-OCE and an appointment to the NASA Postdoctoral Program, as well as to BCG via a postdoctoral fellowship from the Agouron Institute. DSH was supported by a WHOI postdoctoral fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN56547 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 18; 6; 663-708
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: For the first time in human history, we will soon be able to apply to the scientific method to the question "Are We Alone?" The rapid advance of exoplanet discovery, planetary systems science, and telescope technology will soon allow scientists to search for life beyond our Solar System through direct observation of extrasolar planets. This endeavor will occur alongside searches for habitable environments and signs of life within our Solar System. While these searches are thematically related and will inform each other, they will require separate observational techniques. The search for life on exoplanets holds potential through the great diversity of worlds to be explored beyond our Solar System. However, there are also unique challenges related to the relatively limited data this search will obtain on any individual world.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN52771
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Some atmospheric gases have been proposed as counter indicators to the presence of life on an exoplanet if remotely detectable at sufficient abundance (i.e., antibiosignatures), informing the search for biosignatures and potentially fingerprinting uninhabited habitats. However, the quantitative extent to which putative antibiosignatures could exist in the atmospheres of inhabited planets is not well understood. The most commonly referenced potential antibiosignature is CO, because it represents a source of free energy and reduced carbon that is readily exploited by life on Earth and is thus often assumed to accumulate only in the absence of life. Yet, biospheres actively produce CO through biomass burning, photooxidation processes, and release of gases that are photochemically converted into CO in the atmosphere. We demonstrate with a 1D ecosphere-atmosphere model that reducing biospheres can maintain CO levels of approximately 100 ppmv (parts per million by volume) even at low H2 fluxes due to the impact of hybrid photosynthetic ecosystems. Additionally, we show that photochemistry around M dwarf stars is particularly favorable for the buildup of CO, with plausible concentrations for inhabited, oxygen-rich planets extending from hundreds of ppm to several percent. Since CH4 buildup is also favored on these worlds, and because O2 and O3 are likely not detectable with the James Webb Space Telescope, the presence of high CO (greater than 100 ppmv) may discriminate between oxygen-rich and reducing biospheres with near-future transmission observations. These results suggest that spectroscopic detection of CO can be compatible with the presence of life and that a comprehensive contextual assessment is required to validate the significance of potential antibiosignatures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN66978 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 874; 1; 9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection.
    Keywords: Exobiology
    Type: GSFC-E-DAA-TN58405 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 18; 6; 779–824
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-05-15
    Description: Here we review how environmental context can be used to interpret whether O2 is a biosignature in extrasolar planetary observations. This paper builds on the overview of current biosignature research discussed in Schwieterman et al. (2017), and provides an in-depth, interdisciplinary example of biosignature identification and observation that serves as a basis for the development of the general framework for biosignature assessment described in Catling et al., (2017). O2 is a potentially strong biosignature that was originally thought to be an unambiguous indicator for life at high-abundance. In exploring O2 as a biosignature, we describe the coevolution of life with the early Earth's environment, and how the interplay of sources and sinks in the planetary environment may have resulted in suppression of O2 release into the atmosphere for several billion years, a false negative for biologically generated O2. False positives may also be possible, with recent research showing potential mechanisms in exoplanet environments that may generate relatively high abundances of atmospheric O2 without a biosphere being present. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. Similarly our ability to interpret O2 observed in an exoplanetary atmosphere is also crucially dependent on environmental context to rule out false positive mechanisms. We describe future photometric, spectroscopic and time-dependent observations of O2 and the planetary environment that could increase our confidence that any observed O2 is a biosignature, and help discriminate it from potential false positives. The rich, interdisciplinary study of O2 illustrates how a synthesis of our understanding of life's evolution and the early Earth, scientific computer modeling of star-planet interactions and predictive observations can enhance our understanding of biosignatures and guide and inform the development of next-generation planet detection and characterization missions. By observing and understanding O2 in its planetary context we can increase our confidence in the remote detection of life, and provide a model for biosignature development for other proposed biosignatures.
    Keywords: Exobiology
    Type: GSFC-E-DAA-TN58082 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 18; 6; 630-662
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-29
    Description: The habitable zone (HZ) is commonly defined as the range of distances from a host star within which liquid water, a key requirement for life, may exist on a planet's surface. Substantially more CO2 than present in Earth's modern atmosphere is required to maintain clement temperatures for most of the HZ, with several bars required at the outer edge. However, most complex aerobic life on Earth is limited by CO2 concentrations of just fractions of a bar. At the same time, most exoplanets in the traditional HZ reside in proximity to M dwarfs, which are more numerous than Sun-like G dwarfs but are predicted to promote greater abundances of gases that can be toxic in the atmospheres of orbiting planets, such as carbon monoxide (CO). Here we show that the HZ for complex aerobic life is likely limited relative to that for microbial life. We use a 1D radiative-convective climate and photochemical models to circumscribe a Habitable Zone for Complex Life (HZCL) based on known toxicity limits for a range of organisms as a proof of concept. We find that for CO2 tolerances of 0.01, 0.1, and 1 bar, the HZCL is only 21%, 32%, and 50% as wide as the conventional HZ for a Sun-like star, and that CO concentrations may limit some complex life throughout the entire HZ of the coolest M dwarfs. These results cast new light on the likely distribution of complex life in the universe and have important ramifications for the search for exoplanet biosignatures and technosignatures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN70116 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 878; 1; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wang, Xiangli; Reinhard, Christopher T; Planavsky, Noah J; Owens, Jeremy D; Lyons, Timothy W; Johnson, Thomas M (2016): Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 1258. Chemical Geology, 429, 85-92, https://doi.org/10.1016/j.chemgeo.2016.03.006
    Publication Date: 2020-02-22
    Description: In order to advance our understanding of the emerging chromium (Cr) isotope system as a paleoredox proxy, we measured the 53Cr/52Cr of black shales deposited before, during, and after Cretaceous Oceanic Anoxic Event 2 (OAE2). We observed a 〉 1 per mil coherent negative 53Cr/52Cr excursion and significant drawdown in Cr enrichments during OAE2 coincident with a large positive carbon isotope excursion. Our observed negative 53Cr/52Cr excursion during OAE2 is most easily linked to an increase in the ratio of euxinic to reducing conditions. Additional work on other OAE sections is needed to determine the spatial significance of this Cr isotope trend.
    Type: Dataset
    Format: text/tab-separated-values, 261 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...