ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0931-1890
    Keywords: Key words Capacitance ; Time lag ; Transpiration ; Xylem sap flux
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Using constant heat sap flow sensors, xylem water fluxes in ten tree species and two liana species were monitored for 5–10 days during the beginning of the wet season in May, 1993. For a subset of the trees, a branch was also monitored at the top of the crown for 5 days. Xylem flux (J S) was related diurnally in all plants to vapor pressure deficit (D) measured within the upper-third of the canopy, and to incoming shortwave radiation R S above the canopy. Cross-correlation analysis was used to estimate time lags between diurnal patterns of J S and D or R S, and between J S in stems and branches. The maximum correlation coefficient from cross-correlation of J S with R S (range=0.57–0.92) was often higher than the maximum of J S with D (range=0.43–0.89), indicating that diurnal J S was more dependent on R S than D. Time lags (lag corresponding to maximum correlation) of J S at stem-base with D was shorter (0–45 min) than with radiation (5–115 min), highly variable within a species, and uncorrelated to the height or exposure of tree crowns or liana in the canopy. On a stand level, not accounting for the diel lag between stem sap flux and canopy flux resulted in errors in estimated canopy transpiration of up to 30%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0931-1890
    Keywords: Key words Tree transpiration ; Hydraulic resistance ; Hydraulic capacitance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The use of stem sap flow data to estimate diurnal whole-tree transpiration and canopy stomatal conductance depends critically upon knowledge of the time lag between transpiration and water flux through the stem. In this study, the time constant for water movement in stems of 12-year-old Pinus taeda L. individuals was estimated from analysis of time series data of stem water flux and canopy transpiration computed from mean daytime canopy conductance, and diurnal vapor pressure deficit and solar radiation measurements. Water uptake through stems was measured using a constant-heat sapflow probe. Canopy transpiration was correlated to stem uptake using a resistance-capacitance equation that incorporates a time constant parameter. A least-squares auto-regression determined the parameters of the resistance-capacitance equation. The time constants for ten loblolly pine trees averaged 48.0 (SE = 2.0) min and the time lag for the diurnal frequency averaged 47.0 (SE = 2.0) min. A direct-cross correlation analysis between canopy transpiration and sap flow time series showed maximum correlation at an approximately 30 min lag. Residuals (model-predicted minus actual stem flow data) increased with increasing soil moisture depletion. While the time constants did not vary significantly within the range of tree sizes studied, hydraulic resistance and capacitance terms were individually dependent on stem cross-sectional area: capacitance increased and resistance decreased with stem volume. This result may indicate an inverse adjustment of resistance and capacitance to maintain a similar time constant over the range of tree sizes studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0003-9861
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Bioenergetics 548 (1979), S. 106-118 
    ISSN: 0005-2728
    Keywords: (Ca^2^+ + Mg^2^+-ATPase ; (Rhodospirillum rubrum) ; ATPase complex ; Bacterial photosynthesis ; Chromatophore ; Coupling factor ; Oligomycin-sensitive F"0 . F"1
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Forest floor CO2 efflux (Fff) depends on vegetation type, climate, and soil physical properties. We assessed the effects of biological factors on Fff by comparing a maturing pine plantation (PP) and a nearby mature Oak-Hickory-type hardwood forest (HW). Fff was measured continuously with soil chambers connected to an IRGA during 2001–2002. At both sites, Fff depended on soil temperature at 5 cm (T5) when soil was moist (soil moisture, θ〉0.20 m3 m−3), and on both T5 and θ when soil was drier. A model (Fff (T5, θ)) explained 〈inlineGraphic alt="geqslant R: gt-or-equal, slanted" extraInfo="nonStandardEntity" href="urn:x-wiley:13541013:GCB915:ges" location="ges.gif"/〉92% of the variation in the daily mean Fff at both sites. Higher radiation reaching the ground during the leafless period, and a thinner litter layer because of faster decomposition, probably caused higher soil temperature at HW compared with PP. The annual Fff was estimated at 1330 and 1464 g C m−2 yr−1 for a year with mild drought (2001) at PP and HW, respectively, and 1231 and 1557 g C m−2 yr−1 for a year with severe drought (2002). In the wetter year, higher soil temperature and moisture at HW compared with PP compensated for the negative effect on Fff of the response to these variables resulting in similar annual Fff at both stands. In the drier year, however, the response to soil temperature and moisture was more similar at the two stands causing the difference in the state variables to impel a higher Fff at HW. A simple mass balance indicated that in the wetter year, C in the litter–soil system was at steady state at HW, and was accruing at PP. However, HW was probably losing C from the mineral soil during the severe drought year of 2002, while PP was accumulating C at a lower rate because of a loss of C from the litter layer. Such contrasting behavior of two forest types in close proximity might frustrate attempts to estimate regional carbon (C) fluxes and net C exchange.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Variation in stomatal conductance is typically explained in relation to environmental conditions. However, tree height may also contribute to the variability in mean stomatal conductance. Mean canopy stomatal conductance of individual tree crowns (GSi) was estimated using sap flux measurements in Fagus sylvatica L., and the hypothesis that GSi decreases with tree height was tested. Over 13 d of the growing season during which soil moisture was not limiting, GSi decreased linearly with the natural logarithm of vapour pressure deficit (D), and increased exponentially to saturation with photosynthetic photon flux density (Qo). Under conditions of D= 1 kPa and saturating Qo, GSi decreased by approximately 60% with 30 m increase in tree height. Over the same range in height, sapwood-to-leaf area ratio (AS:AL) doubled. A simple hydraulic model explained the variation in GSi based on an inverse relationship with height, and a linear relationship with AS:AL. Thus, in F. sylvatica, adjustments in AS:AL partially compensate for the negative effect of increased flow-path length on leaf conductance. Furthermore, because stomata with low conductance are less sensitive to D, gas exchange of tall trees is reduced less by high D. Despite these compensations, decreasing hydraulic conductance with tree height in F. sylvatica reduces carbon uptake through a corresponding decrease in stomatal conductance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Responses of stomatal conductance (gs) to increasing vapour pressure deficit (D) generally follow an exponential decrease described equally well by several empirical functions. However, the magnitude of the decrease – the stomatal sensitivity – varies considerably both within and between species. Here we analysed data from a variety of sources employing both porometric and sap flux estimates of gs to evaluate the hypothesis that stomatal sensitivity is proportional to the magnitude of gs at low D (≤ 1 kPa). To test this relationship we used the function gs=gsref–m· lnD where m is the stomatal sensitivity and gsref=gs at D= 1 kPa. Regardless of species or methodology, m was highly correlated with gsref (average r2= 0·75) with a slope of approximately 0·6. We demonstrate that this empirical slope is consistent with the theoretical slope derived from a simple hydraulic model that assumes stomatal regulation of leaf water potential. The theoretical slope is robust to deviations from underlying assumptions and variation in model parameters. The relationships within and among species are close to theoretical predictions, regardless of whether the analysis is based on porometric measurements of gs in relation to leaf-surface D (Ds), or on sap flux-based stomatal conductance of whole trees (GSi), or stand-level stomatal conductance (GS) in relation to D. Thus, individuals, species, and stands with high stomatal conductance at low D show a greater sensitivity to D, as required by the role of stomata in regulating leaf water potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 19 (1996), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We investigated radial patterns of sap flux density and wood properties in the sapwood of young loblolly pine (Finns taeda L.), mature white oak (Quercus alba L.) and sweetgum (Liquidambar styraciflua L.), which represent three major classes of wood anatomy: non-porous (coniferous), ring-porous and diffuse-porous. Radial measurements of xylem sap flux density were made in sections of xylem extending to 20 mm and 20–40 mm from the cambium. These measurements were compared with measurements of the relative water content (Rs) and sapwood specific gravity (ρr) of corresponding radial sections. In both hardwood species, sap flow differences were rarely significant between the two depth intervals. In pine, a 59% reduction in daily sap flux density from outer to inner sapwood was found. This could not be accounted for by a 3% drop in Rs; rather, an accompanying 9% reduction in ρr indicated a transition between the depth intervals from mature to juvenile sapwood, and is the probable cause of the lower flux rate in the inner xylem of pine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We investigated the hydraulic consequences of a major decrease in root-to-leaf area ratio (AR:AL) caused by nutrient amendments to 15-year-old Pinus taeda L. stands on sandy soil. In theory, such a reduction in AR:AL should compromise the trees’ ability to extract water from drying sand. Under equally high soil moisture, canopy stomatal conductance (GS) of fertilized trees (F) was 50% that of irrigated/fertilized trees (IF), irrigated trees (I), and untreated control trees (C). As predicted from theory, F trees also decreased their stomatal sensitivity to vapour pressure deficit by 50%. The lower GS in F was associated with 50% reduction in leaf-specific hydraulic conductance (KL) compared with other treatments. The lower KL in F was in turn a result of a higher leaf area per sapwood area and a lower specific conductivity (conducting efficiency) of the plant and its root xylem. The root xylem of F trees was also 50% more resistant to cavitation than the other treatments. A transport model predicted that the lower AR:AL in IF trees resulted in a considerably restricted ability to extract water during drought. However, this deficiency was not exposed because irrigation minimized drought. In contrast, the lower AR:AL in F trees caused only a limited restriction in water extraction during drought owing to the more cavitation resistant root xylem in this treatment. In both fertilized treatments, approximate safety margins from predicted hydraulic failure were minimal suggesting increased vulnerability to drought-induced dieback compared with non-fertilized trees. However, IF trees are likely to be so affected even under a mild drought if irrigation is withheld.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 79 (1977), S. 151-154 
    ISSN: 0014-5793
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...