ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-22
    Description: The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m-2/τ550 and −71 W m-2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-02
    Description: The impact of absorbing aerosols on climate is complex, with their potential positive or negative forcing, depending on many factors, including their height distribution and reflective properties of the underlying background. Measurement data is very limited, due to insufficient remote sensing methods dedicated to the retrieval of their vertical distribution. Columnar values of absorbing aerosol optical depth (AAOD) and single scattering albedo (SSA) are retrieved by the Aerosol Robotic Network (AERONET). However, the number of available results is low due to sky condition and aerosol optical depth (AOD) limitation. Presented research describes results of field campaigns in Strzyżów (South-East Poland, Eastern Europe) dedicated to the comparison of the absorption coefficient and SSA measurements performed with on-ground in-situ devices (aethalomter, nephelometer), small unmanned aerial system (UAS) carrying micro-aethalometer, as well as with lidar/ceilometer. An important aspect is the comparison of measurement results with those delivered by AERONET. Correlation of absorption to scattering coefficients measured on ground (0.79) and correlation of extinction on ground to AOD measured by AERONET (0.77) was visibly higher than correlation between AOD and AAOD retrieved by AERONET (0.56). Columnar SSA was weakly correlated with ground SSA (higher values of columnar SSA), which were mainly explained by hygroscopic effects, increasing scattering coefficient in ambient (wet conditions), and partly high uncertainty of SSA retrieval. AAOD derived with the use of profiles from UAS up to PBL height, was estimated to contribute in average to 37% of the total AAOD. A method of AAOD estimation, in the whole troposphere, with use of measured vertical profiles of absorption coefficient and extinction coefficient profiles from lidars was proposed. AAOD measured with this method has poor correlation with AERONET data, however for some measurements, within PBL, AAOD was higher than reported by AERONET, suggesting potential underestimation in photometric measurement under particular conditions. Correlation of absorption coefficient in profile to on ground measurements decrease with altitude. Measurements of SSA from drones agree well with ground measurements and are lower than results from AERONET, which suggests a larger contribution of absorbing aerosols. As an alternative for AAOD estimation in case of lack of AERONET AAOD data simple models are proposed, which base on AOD scaling with SSA measured with different methods. Proposed solution increase potential of absorption coefficient measurements in vertical profiles and columns of the atmosphere. Presented solutions make measurements of absorption coefficients in vertical profiles more affordable and allow rough estimation of columnar values for the whole atmosphere.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-17
    Description: The aim of the presented study was to investigate the impact on the radiation budget of biomass burning smoke plume transported from Alaska to high Arctic region (Ny-Alesund, Svalbard) in early July 2015. This high aerosol load event is considered exceptional in the last 25 years with mean aerosol optical depth increased by the factor of 10 in comparison to the average summer background values. We utilised in-situ data with hygroscopic growth equations as well as remote sensing measurements as inputs to radiative transfer models with an objective to estimate biases associated with (i) hygroscopicity, (ii) variability of ω profiles and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass burning emissions was used to interpret the transport and transformations pathways. Provided MODTRAN simulations resulted in the mean aerosol direct radiative forcing on the level of −78.9 W m−2 and −47.0 W m−2 at the surface and the top of the atmosphere respectively for the mean value of aerosol optical depth equal to 0.64 at 550 nm. It corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2 estimated by radiometers and model simulations. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m−2 / τ550 and −71 W m−2 / τ550 at the surface and at the top of the atmosphere. Estimated heating rate up to 1.8 K day−1 inside the BB plume implied vertical mixing with the turbulent kinetic energy of 0.3 m2 s−2. Ultimately, uncertainty connected with the plane-parallel atmosphere approximation altered results by about 2 W m−2.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-06
    Description: This paper presents the results of measurements of aerosol physical and chemical properties during iAREA2014 campaign that took place on Svalbard between 15th of Mar and 4th of May 2014. With respect to field area, the experiment consisted of two sites: NyeÅlesund (78�550N, 11�560E) and Longyearbyen (78�130N, 15�330E) with further integration of Aerosol Robotic Network (AERONET) station in Hornsund (77�000N, 15�330E). The subject of this study is to investigate the inesitu, passive and active remote sensing observations as well as numerical simulations to describe the temporal variability of aerosol singleescattering properties during spring season on Spitsbergen. The retrieval of the data indicates several event days with enhanced singleescattering properties due to the existence of sulphate and additional seaesalt load in the atmosphere which is possibly caused by relatively high wind speed. Optical results were confirmed by numerical simulations made by the GEMeAQ model and by chemical observations that indicated up to 45% contribution of the seaesalt to a PM10 total aerosol mass concentration. An agreement between the in-situ optical and microphysical properties was found, namely: the positive correlation between aerosol scattering coefficient measured by the nephelometer and effective radius obtained from laser aerosol spectrometer as well as negative correlation between aerosol scattering coefficient and the Ångstrom exponent indicated that slightly larger particles dominated during special events. The inesitu surface observations do not show any significant enhancement of the absorption coefficient as well as the black carbon concentration which might occur during spring. All of extensive singleescattering properties indicate a diurnal cycle in Longyearbyen, where 21:00e5:00 data stays at the background level, however increasing during the day by the factor of 3e4. It is considered to be highly connected with local emissions originating in combustion, traffic and harbour activities. On the other hand, no daily fluctuations in NyeÅlesund are observed. Mean values in NyeÅlesund are equal to 8.2, 0.8 Mm�1 and 103 ng/m3 for scattering, absorption coefficients and black carbon concentration; however in Longyearbyen (only data from 21:00e05:00 UTC) they reach 7.9, 0.6 Mm�1 as well as 83 ng/ m3 respectively. Overall, the spring 2014 was considerably clean and seaesalt was the major aerosol component
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-03-05
    Description: The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m ^-2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W/m ^2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m^−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m^−2/τ550 and −71 W^m−2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day^−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m^2s^−2
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-07-11
    Description: This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms see ms to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ±0.025, respectively.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...