ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-07
    Description: Rapid Arctic warming drives profound change in the marine environment that have significant socio-economic impacts within the Arctic and beyond, including climate and weather hazards, food security, transportation, infrastructure planning and resource extraction. These concerns drive efforts to understand and predict Arctic environmental change and motivate development of an Arctic Region Component of the Global Ocean Observing System (ARCGOOS) capable of collecting the broad, sustained observations needed to support these endeavors. This paper provides a roadmap for establishing the ARCGOOS. ARCGOOS development must be underpinned by a broadly endorsed framework grounded in high-level policy drivers and the scientific and operational objectives that stem from them. This should be guided by a transparent, internationally accepted governance structure with recognized authority and organizational relationships with the national agencies that ultimately execute network plans. A governance model for ARCGOOS must guide selection of objectives, assess performance and fitness-to-purpose, and advocate for resources. A requirements-based framework for an ARCGOOS begins with the Societal Benefit Areas (SBAs) that underpin the system. SBAs motivate investments and define the system�s science and operational objectives. Objectives can then be used to identify key observables and their scope. The domains of planning/policy, strategy, and tactics define scope ranging from decades and basins to focused observing with near real time data delivery. Patterns emerge when this analysis is integrated across an appropriate set of SBAs and science/operational objectives, identifying impactful variables and the scope of the measurements. When weighted for technological readiness and logistical feasibility, this can be used to select Essential ARCGOOS Variables, analogous to Essential Ocean Variables of the Global Ocean Observing System. The Arctic presents distinct needs and challenges, demanding novel observing strategies. Cost, traceability and ability to integrate region-specific knowledge have to be balanced, in an approach that builds on existing and new observing infrastructure. ARCGOOS should benefit from established data infrastructures following the Findable, Accessible, Interoperable, Reuseable Principles to ensure preservation and sharing of data and derived products. Linking to the Sustaining Arctic Observing Networks (SAON) process and involving Arctic stakeholders, for example through liaison with the International Arctic Science Committee (IASC), can help ensure success.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Macmillan Publishers, 2009. This is the author's version of the work. It is posted here by permission of Macmillan Publishers for personal use, not for redistribution. The definitive version was published in Nature Geoscience 2 (2009): 67-72, doi:10.1038/ngeo382.
    Description: The process of open-ocean convection in the subpolar North Atlantic Ocean forms a dense water mass that impacts the meridional overturning circulation and heat flux, and sequesters atmospheric carbon. In recent years the convection has been shallow or nonexistent, which could be construed as a consequence of a warmer climate. However, in the winter of 2007-08 deep convection returned to the subpolar gyre in both the Labrador and Irminger Seas. Here we document this return and elucidate the reasons why it happened. Profiling float data from the Argo programme are used to document the deep mixing, and a variety of in-situ, satellite, and reanalysis products are analyzed to describe the conditions leading to the overturning. The transition to a convective state took place abruptly, without going through a preconditioning phase, which is contrary to general expectations. Changes in the hemispheric air temperature, tracks of storms, flux of freshwater to the Labrador Sea, and distribution of pack ice all conspired to enhance the air-sea heat flux, resulting in the deep overturning. This study illuminates the complexity of the North Atlantic convective system.
    Description: Support for this work was provided by the Ocean Sciences Division of the National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2006. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 19, 3 (2006): 122-133.
    Description: The Japan/East Sea (JES) contains several oceanic regions separated by dynamic boundaries. These distinct regions, and the physical features that establish and maintain the boundaries between the regions, have significant impacts on its ocean biology. Until recently, most studies of the biology of the JES have focused on nearshore regions, with few detailed studies of the interior of the JES or the dynamic features that define the different regions. In addition, the classic sampling methods used in previous work have not allowed high-resolution studies of biological-physical interactions associated with key dynamic mesoscale frontal zones, quasi-synoptic surveys of water column and biological structure in three dimensions, or broad-scale description of the seasonal cycles in the different biogeographic regions of the JES.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Arctic Institute of North America, 2015. This article is posted here by permission of Arctic Institute of North America for personal use, not for redistribution. The definitive version was published in Arctic 68, supple.1 (2015): 11-27, doi:10.14430/arctic4449.
    Description: The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This activity will be driven by increased demand for energy and the marine resources of an Arctic Ocean accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism, and search and rescue will increase the pressure on the vulnerable Arctic environment. Technologies that allow synoptic in situ observations year-round are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual, and decadal scales. These data can inform and enable both sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. In this paper, we discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic, and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings, and vehicles. We support the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary in situ Arctic Ocean observatory.
    Keywords: Arctic observing systems ; Arctic acoustics ; Acoustic tomography ; Cabled networks ; Passive acoustics ; Active acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 4 (2015): 54–63, doi:10.5670/oceanog.2015.81.
    Description: Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012–June 4, 2013, across the Kuroshio path at 18.75°N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model—four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is ~16 Sv with a standard deviation ~4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is ~7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is ~10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is ~1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is ~2.7 Sv with a standard deviation ~2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is ~14 ± 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.
    Description: This work was supported by the US Office of Naval Research (N00014-10-1-0273 and N00014-15-1-2285 to BDC, N00014-10-1-0273 to GG, N00014-14-1-0065 to ALG, N00014-10-1-0468 to TBS, N0001-10-1-0273 to LRC, N00014-10-1-0308 to CML, N00014-10-1-0397 and N00014-10-1-0273 to BM, N00014-10-1-0397 to RCL, and N00014-10-1-0268 to SRJ) and the Taiwan Ministry of Science and Technology. Yang, Chang, and Mensah are supported by the Taiwan Ministry of Science and Technology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4392–4415, doi:10.1002/2016JC011634.
    Description: A high-resolution (up to 2 km), unstructured-grid, fully coupled Arctic sea ice-ocean Finite-Volume Community Ocean Model (AO-FVCOM) was employed to simulate the flow and transport through the Canadian Arctic Archipelago (CAA) over the period 1978–2013. The model-simulated CAA outflow flux was in reasonable agreement with the flux estimated based on measurements across Davis Strait, Nares Strait, Lancaster Sound, and Jones Sounds. The model was capable of reproducing the observed interannual variability in Davis Strait and Lancaster Sound. The simulated CAA outflow transport was highly correlated with the along-strait and cross-strait sea surface height (SSH) difference. Compared with the wind forcing, the sea level pressure (SLP) played a dominant role in establishing the SSH difference and the correlation of the CAA outflow with the cross-strait SSH difference can be explained by a simple geostrophic balance. The change in the simulated CAA outflow transport through Davis Strait showed a negative correlation with the net flux through Fram Strait. This correlation was related to the variation of the spatial distribution and intensity of the slope current over the Beaufort Sea and Greenland shelves. The different basin-scale surface forcings can increase the model uncertainty in the CAA outflow flux up to 15%. The daily adjustment of the model elevation to the satellite-derived SSH in the North Atlantic region outside Fram Strait could produce a larger North Atlantic inflow through west Svalbard and weaken the outflow from the Arctic Ocean through east Greenland.
    Description: NSF Grant Numbers: OCE-1203393, PLR-1203643; National Natural Science Foundation of China Grant Number: 41276197; Shanghai Pujiang Program Grant Number: 12PJ1404100; Shanghai Shuguang Program
    Description: 2016-12-25
    Keywords: Water transport ; Canadian Arctic Archipelago ; Atmospheric forcing ; Sea surface height
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2011. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 24 no. 4 (2011): 24–31, doi:10.5670/oceanog.2011.91.
    Description: The application of new technologies has allowed oceanographers and meteorologists to study the ocean beneath typhoons in detail. Recent studies in the western Pacific Ocean reveal new insights into the influence of the ocean on typhoon intensity.
    Description: This work is supported by grants from the Office of Naval Research, N00014- 10-WX-20203 (Black), N00014-08-1- 0656 (Centurioni), N00014-08-1-0577 (D’Asaro), N00014-09-1-0816 (D’Asaro), N00014-10-WX-21335 (Harr), N00014-08-1-0614 (Jayne), N00014- 09-1-0133 (Lee), N00014-08-1-0560 (Lien), N00014-10-1-0313 (student support), N00014-08-1-0658 (Rainville), N00014-08-1-0560 (Sanford); the National Oceanic and Atmospheric Administration NA17RJ1231 (Centurioni); and the National Science Foundation OCE0549887 (D’Asaro).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3519–3542, doi:10.1002/2016JC012519.
    Description: Observations from two companion field programs—Origins of the Kuroshio and Mindanao Current (OKMC) and Observations of Kuroshio Transport Variability (OKTV)—are used here to examine the Kuroshio's temporal and spatial evolution. Kuroshio strength and velocity structure were measured between June 2012 and November 2014 with pressure-sensor equipped inverted echo sounders (PIESs) and upward-looking acoustic Doppler current profilers (ADCPs) deployed across the current northeast of Luzon, Philippines, and east of Taiwan with an 8 month overlap in the two arrays' deployment periods. The time-mean net (i.e., integrated from the surface to the bottom) absolute transport increases downstream from 7.3 Sv (±4.4 Sv standard error) northeast of Luzon to 13.7 Sv (±3.6 Sv) east of Taiwan. The observed downstream increase is consistent with the return flow predicted by the simple Sverdrup relation and the mean wind stress curl field over the North Pacific (despite the complicated bathymetry and gaps along the North Pacific western boundary). Northeast of Luzon, the Kuroshio—bounded by the 0 m s−1 isotach—is shallower than 750 dbar, while east of Taiwan areas of positive flow reach to the seafloor (3000 m). Both arrays indicate a deep counterflow beneath the poleward-flowing Kuroshio (–10.3 ± 2.3 Sv by Luzon and −12.5 ± 1.2 Sv east of Taiwan). Time-varying transports and velocities indicate the strong influence at both sections of westward propagating eddies from the ocean interior. Topography associated with the ridges east of Taiwan also influences the mean and time-varying velocity structure there.
    Description: Office of Naval Research (ONR) Grant Numbers: N00014-15-12593 , N00014-16-13069; Taiwan's Ministry of Science and Technology Grant Numbers: NSC 101-2611-M-002-018-MY3 , MOST 103-2611-M-002-011 , MOST 105-2119-M-002-042; ONR Grant Numbers: N00014-10-1-0308 , N00015-10-1-0469
    Description: 2017-11-02
    Keywords: Kuroshio ; PIES ; ADCP ; Eddies ; Western boundary current ; Altimetry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 5571-5586, doi:10.1029/2018JC014096.
    Description: The Arctic ice cover influences the generation, propagation, and dissipation of internal waves, which in turn may affect vertical mixing in the ocean interior. The Arctic internal wavefield and its relationship to the ice cover is investigated using observations from Ice‐Tethered Profilers with Velocity and Seaglider sampling during the 2014 Marginal Ice Zone experiment in the Canada Basin. Ice roughness, ice concentration, and wind forcing all influenced the daily to seasonal changes in the internal wavefield. Three different ice concentration thresholds appeared to determine the evolution of internal wave spectral energy levels: (1) the initial decrease from 100% ice concentration after which dissipation during the surface reflection was inferred to increase, (2) the transition to 70–80% ice concentration when the local generation of internal waves increased, and (3) the transition to open water that was associated with larger‐amplitude internal waves. Ice roughness influenced internal wave properties for ice concentrations greater than approximately 70–80%: smoother ice was associated with reduced local internal wave generation. Richardson numbers were rarely supercritical, consistent with weak vertical mixing under all ice concentrations. On decadal timescales, smoother ice may counteract the effects of lower ice concentration on the internal wavefield complicating future predictions of internal wave activity and vertical mixing.
    Description: Seagliders Grant Number: N00014‐12‐10180; Deployment and subsequent analysis efforts of the ITP‐Vs Grant Numbers: N00014‐12‐10799, N00014‐12‐10140; Joint Ocean Ice Studies cruise; Beaufort Gyre Observing System
    Description: 2019-02-14
    Keywords: Internal waves ; Arctic ; Near‐inertial ; Ice roughness ; Ice concentration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C03S18, doi:10.1029/2006JC003726.
    Description: A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS® is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ∼12% over the northern Adriatic during both bora compared with a one-way coupled simulation.
    Description: The research support for J. Pullen, J. D. Doyle, and T. Haack was provided by the Office of Naval Research (ONR) program elements 0602435N and 0601153N.
    Keywords: Air-sea interaction ; Coupled modeling ; Adriatic Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...