All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2019-01-10
    Description: Ice sheets are currently ignored in global methane budgets1,2. Although ice sheets have been proposed to contain large reserves of methane that may contribute to a rise in atmospheric methane concentration if released during periods of rapid ice retreat3,4, no data exist on the current methane footprint of ice sheets. Here we find that subglacially produced methane is rapidly driven to the ice margin by the efficient drainage system of a subglacial catchment of the Greenland ice sheet. We report the continuous export of methane-supersaturated waters (CH4(aq)) from the ice-sheet bed during the melt season. Pulses of high CH4(aq) concentration coincide with supraglacially forced subglacial flushing events, confirming a subglacial source and highlighting the influence of melt on methane export. Sustained methane fluxes over the melt season are indicative of subglacial methane reserves that exceed methane export, with an estimated 6.3 tonnes (discharge-weighted mean; range from 2.4 to 11 tonnes) of CH4(aq) transported laterally from the ice-sheet bed. Stable-isotope analyses reveal a microbial origin for methane, probably from a mixture of inorganic and ancient organic carbon buried beneath the ice. We show that subglacial hydrology is crucial for controlling methane fluxes from the ice sheet, with efficient drainage limiting the extent of methane oxidation5 to about 17 per cent of methane exported. Atmospheric evasion is the main methane sink once runoff reaches the ice margin, with estimated diffusive fluxes (4.4 to 28 millimoles of CH4 per square metre per day) rivalling that of major world rivers6. Overall, our results indicate that ice sheets overlie extensive, biologically active methanogenic wetlands and that high rates of methane export to the atmosphere can occur via efficient subglacial drainage pathways. Our findings suggest that such environments have been previously underappreciated and should be considered in Earth’s methane budget.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-01
    Description: Given alterations in global hydrologic regime, we examine the role of hydrology in regulating stream microbial mat abundance in the McMurdo Dry Valleys, Antarctica. Here, perennial mats persist as a desiccated crust until revived by summer streamflow, which varies inter-annually, and has increased since the 1990s. We predicted high flows to scour mats, and intra-seasonal drying to slow growth. Responses were hypothesized to differ based on mat location within streams, along with geomorphology, which may promote (high coverage) or discourage (low coverage) accrual. We compared hydrologic trends with the biomass of green and orange mats, which grow in the channel, and black mats growing at stream margins for 16 diverse stream transects over two decades. We found mat biomass collectively decreased during first decade coinciding with low flows, and increased following elevated discharges. Green mat biomass showed the greatest correlations with hydrology and was stimulated by discharge in high coverage transects, but negatively correlated in low coverage due to habitat scour. In contrast, orange mat biomass was negatively related to flow in high coverage transects, but positively correlated in low coverage because of side-channel expansion. Black mats were weakly correlated with all hydrologic variables regardless of coverage. Lastly, model selection indicated the best combination of predictive hydrologic variables for biomass differed between mat types, but also high and low coverage transects. These results demonstrate the importance of geomorphology and species composition to modeling primary production, and will be useful in predicting ecological responses of benthic habitats to altered hydrologic regimes. ©2014 Springer Science+Business Media New York
    Print ISSN: 1432-9840
    Electronic ISSN: 1435-0629
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...