ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2023-05-12
    Keywords: Area/locality; Conductivity, average; ELEVATION; Heat flow; LATITUDE; LONGITUDE; Method comment; Number; Number of temperature data; Sample, optional label/labor no
    Type: Dataset
    Format: text/tab-separated-values, 583 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q02003, doi:10.1029/2003GC000626.
    Description: The summit crater of Vailulu'u Seamount, the youngest volcano in the Samoan chain, hosts an active hydrothermal system with profound impact on the ocean water column inside and around its crater (2 km wide and 407 m deep at a 593 m summit depth). The turbidity of the ocean water reaches 1.4 NTU, values that are higher than in any other submarine hydrothermal system. The water is enriched in hydrothermal Mn (3.8 ppb) and 3He (1 × 10−11 cc/g) and we measured water temperature anomalies near the crater floor up to 0.2°C. The hydrothermal system shows complex interactions with the ocean currents around Vailulu'u that include tidally-modulated vertical motions of about 40–50 m, and replenishment of waters into the crater through breaches in the upper half of the crater wall. Inside and outside potential density gradients suggest that hydrothermal venting exports substantial amounts of water from the crater (1.3 ± 0.2 × 108 m3/day), which is in good agreement with fluxes obtained from a tracer release experiment inside the crater of Vailulu'u (0.8 × 108 m3/day [Hart et al., 2003]). This mass flux, in combination with the differences in the inside and outside crater temperature, yields a power output of around 760 megawatts, the equivalent of 20–100 MOR black smokers. The Mn output of 300 kg/day is approximately ten times the output of a single black smoker.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1955986 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © National Academy of Sciences, 2006. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 103 (2006): 6448-6453, doi:10.1073/pnas.0600830103.
    Description: Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu'u seamount. Nafanua grew from the 1,000-m-deep crater floor in 〈4 years and could reach the sea surface within decades. Vents fill Vailulu'u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu'u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids.
    Description: This work was supported by the National Oceanic and Atmospheric Administration (NOAA) Oceans Exploration and the Hawaii Undersea Research Laboratory–NOAA Undersea Research Program, the National Science Foundation, the Australian Research Council, and the SERPENT program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 5598800 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 1 (2007): 102-115.
    Description: Earth is a thermal engine that dissipates its internal heat primarily through convection. The buoyant rise of hot material transports heat to the surface from the deep interior while colder material sinks at subduction zones. Mid-ocean ridges and hotspots are major expressions of heat dissipation at Earth’s surface, as evidenced by their abundant volcanic activity. Ridges and hotspots, however, could differ significantly in their origins. Ridges are linear features that wind more than 60,000 km around the globe, constituting the major diverging boundaries of Earth’s tectonic plates. Hotspots, on the other hand, are localized regions of abnormally robust magmatism and distinctive geochemical anomalies.
    Description: J.D. acknowledges the support of CNRS-INSU, IPGP, IFREMER and IPEV. J.L. acknowledges support from the National Science Foundation and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. E.T.B. acknowledges research support from the NOAA VENTS Program and Office of Ocean Exploration.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 57 (2010): 931-945, doi:10.1016/j.dsr.2010.04.010.
    Description: The water column imprint of the hydrothermal plume observed at the Nibelungen field (8°18' S 13°30' W) is highly variable in space and time. The off-axis location of the site, along the southern boundary of a non-transform ridge offset at the joint between two segments of the southern Mid-Atlantic Ridge, is characterized by complex, rugged topography, and thus favorable for the generation of internal tides, subsequent internal wave breaking, and associated vertical mixing in the water column. We have used towed transects and vertical profiles of stratification, turbidity, and direct current measurements to investigate the strength of turbulent mixing in the vicinity of the vent site and the adjacent rift valley, and its temporal and spatial variability in relation to the plume dispersal. Turbulent diffusivities Kp were calculated from temperature inversions via Thorpe scales. Heightened mixing (compared to open ocean values) was observed in the whole rift valley within an order of Kp around 10-3 m2 s-1. The mixing close to the vent site was even more elevated, with an average of Kp = 4 x 10-2 m2 s-1. The mixing, as well as the flow field, exhibited a strong tidal cycle, with strong currents and mixing at the non-buoyant plume level during ebb flow. Periods of strong mixing were associated with increased internal wave activity and frequent occurrence of turbulent overturns. Additional effects of mixing on plume dispersal include bifurcation of the particle plume, likely as a result of the interplay between the modulated mixing strength and current speed, as well as high frequency internal waves in the effluent plume layer, possibly triggered by the buoyant plume via nonlinear interaction with the elevated background turbulence or penetrative convection.
    Description: This work was supported by the Priority Program SPP1144 of the Deutsche Forschungsgemeinschaft; this is SPP 1144 contribution number 51. Funding for the ABE team from WHOI was provided by Grant # OE-2006-218 from NOAA's Ocean Exploration Program; funding for the MAPR work was provided by NOAA's Vents Program.
    Keywords: Physical oceanography ; Hydrothermal vents ; Diapycnal mixing ; Plume dispersal ; Mid-Atlantic Ridge ; Rift valleys
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q0AF07, doi:10.1029/2012GC004211.
    Description: The output of gas and tephra from volcanoes is an inherently disorganized process that makes reliable flux estimates challenging to obtain. Continuous monitoring of gas flux has been achieved in only a few instances at subaerial volcanoes, but never for submarine volcanoes. Here we use the first sustained (yearlong) hydroacoustic monitoring of an erupting submarine volcano (NW Rota-1, Mariana arc) to make calculations of explosive gas flux from a volcano into the ocean. Bursts of Strombolian explosive degassing at the volcano summit (520 m deep) occurred at 1–2 min intervals during the entire 12-month hydrophone record and commonly exhibited cyclic step-function changes between high and low intensity. Total gas flux calculated from the hydroacoustic record is 5.4 ± 0.6 Tg a−1, where the magmatic gases driving eruptions at NW Rota-1 are primarily H2O, SO2, and CO2. Instantaneous fluxes varied by a factor of ∼100 over the deployment. Using melt inclusion information to estimate the concentration of CO2 in the explosive gases as 6.9 ± 0.7 wt %, we calculate an annual CO2 eruption flux of 0.4 ± 0.1 Tg a−1. This result is within the range of measured CO2 fluxes at continuously erupting subaerial volcanoes, and represents ∼0.2–0.6% of the annual estimated output of CO2from all subaerial arc volcanoes, and ∼0.4–0.6% of the mid-ocean ridge flux. The multiyear eruptive history of NW Rota-1 demonstrates that submarine volcanoes can be significant and sustained sources of CO2 to the shallow ocean.
    Description: The National Oceanic and Atmospheric Administration Office of Ocean Exploration and Research, the NOAA Vents Program, and the National Science Foundation (OCE-0751776) for support.
    Description: 2013-05-29
    Keywords: Gas flux ; Ocean acoustics ; Seafloor volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 142–157, doi:10.5670/oceanog.2012.12.
    Description: Volcanic eruptions are important events in Earth's cycle of magma generation and crustal construction. Over durations of hours to years, eruptions produce new deposits of lava and/or fragmentary ejecta, transfer heat and magmatic volatiles from Earth's interior to the overlying air or seawater, and significantly modify the landscape and perturb local ecosystems. Today and through most of geological history, the greatest number and volume of volcanic eruptions on Earth have occurred in the deep ocean along mid-ocean ridges, near subduction zones, on oceanic plateaus, and on thousands of mid-plate seamounts. However, deep-sea eruptions (〉 500 m depth) are much more difficult to detect and observe than subaerial eruptions, so comparatively little is known about them. Great strides have been made in eruption detection, response speed, and observational detail since the first recognition of a deep submarine eruption at a mid-ocean ridge 25 years ago. Studies of ongoing or recent deep submarine eruptions reveal information about their sizes, durations, frequencies, styles, and environmental impacts. Ultimately, magma formation and accumulation in the upper mantle and crust, plus local tectonic stress fields, dictate when, where, and how often submarine eruptions occur, whereas eruption depth, magma composition, conditions of volatile segregation, and tectonic setting determine submarine eruption style.
    Description: NSF-OCE 0937409 (KHR), OCE-0525863 and OCE-0732366 (DJF and SAS), 0725605 (WWC), OCE- 0751780 (ETB and RWE), OCE‐0138088 (MRP), OCE-0934278 (DAC), OCE-0623649 (RPD), and a David and Lucile Packard Foundation grant to MBARI (DAC and DWC).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L10608, doi:10.1029/2006GL026048.
    Description: About 90% of Earth's volcanism occurs along the global mid-ocean ridge system. Here, sporadic volcanic and tectonic activity is thought to cause cataclysmic release of hydrothermal fluids, forming event plumes. Each plume often contains as much hydrothermal effluent and heat as chronic hydrothermal venting from a typical vent site discharges during a year. To date, only a few event plumes have been detected, and only above intermediate-rate spreading ridges in the Pacific. Here, we report the first evidence for an unusually large event plume that originated from the slow-spreading (3 cm/yr full-rate) Carlsberg Ridge in the NW Indian Ocean. At 70 km long, up to 4540 km3 in volume and with up to 24 × 1016 J of excess heat, this event plume was substantially larger than previous ones and demonstrates that dispersion of hydrothermal heat and biological products from slow spreading ridges may be more significant and effective than hitherto imagined.
    Description: This work was supported by the Natural Environment Research Council, UK; the National Oceanography Centre, Southampton (NOCS); the NOAA Vents Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 128–141, doi:10.5670/oceanog.2012.11.
    Description: Submarine volcanic eruptions and intrusions construct new oceanic crust and build long chains of volcanic islands and vast submarine plateaus. Magmatic events are a primary agent for the transfer of heat, chemicals, and even microbes from the crust to the ocean, but the processes that control these transfers are poorly understood. The 1980s discovery that mid-ocean ridge eruptions are often associated with brief releases of immense volumes of hot fluids ("event plumes") spurred interest in methods for detecting the onset of eruptions or intrusions and for rapidly organizing seagoing response efforts. Since then, some 35 magmatic events have been recognized and responded to on mid-ocean ridges and at seamounts in both volcanic arc and intraplate settings. Field responses at mid-ocean ridges have found that event plumes occur over a wide range of eruption styles and sizes, and thus may be a common consequence of ridge eruptions. The source(s) of event plume fluids are still debated. Eruptions detected at ridges generally have high effusion rates and short durations (hours to days), whereas field responses at arc volcanic cones have found eruptions with very low effusion rates and durations on the scale of years. New approaches to the study of submarine magmatic events include the development of autonomous vehicles for detection and response, and the establishment of permanent seafloor observatories at likely future eruption sites.
    Description: Support for these efforts came from the NOAA Vents Program and the National Science Foundation, primarily through its long-term funding of the RIDGE and Ridge 2000 Programs, including grants OCE-9812294 and OCE-0222069. SOSUS detection efforts were supported from 2006 to 2009 by the National Science Foundation, grant OCE-0623649.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 4892–4905, doi:10.1002/2013GC004998.
    Description: The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.
    Description: For support to prepare this manuscript, we thank the National Science Foundation (OCE08-38923, GeoEd12-02977), the NOAA Vents (now Earth-Ocean Interactions) Program and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148, and WHOI.
    Description: 2014-05-19
    Keywords: Hydrothermal vent ; Deep-sea vent ; Hydrothermal activity ; Drupal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/tiff
    Format: text/csv
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...