ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2015-08-20
    Description: Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence–absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture ( Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica—a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this sentinel marine alga.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-05
    Description: Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-12
    Description: Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-02
    Description: Ocean surface warming is resulting in an expansion of stratified, low-nutrient environments, a process referred to as ocean desertification 1. A challenge for assessing the impact of these changes is the lack of robust baseline information on the biological communities that carry out marine photosynthesis. Phytoplankton perform half of global biological CO2 uptake, fuel marine food chains, and include diverse eukaryotic algae that have photosynthetic organelles (plastids) acquired through multiple evolutionary events 1–3. While amassing data from ocean ecosystems for the Baselines Initiative (6,177 near full-length 16S rRNA gene sequences and 9.4 million high-quality 16S V1-V2 amplicons) we identified two deep-branching plastid lineages based on 16S rRNA gene data. The two lineages have global distributions, but do not correspond to known phytoplankton. How the newly discovered phytoplankton lineages contribute to food chains and vertical carbon export to the deep sea remains unknown, but their prevalence in expanding, low nutrient surface waters suggests they will have a role in future oceans. © 2017 The Author(s)
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-05
    Description: Background: Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. Results: We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 ) GC splice donors. Micromonas has more genus-specific protein families (19 ) than other genome sequenced prasinophytes (11 ). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Conclusions: Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution. © 2016 van Baren et al.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-03-05
    Description: Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla , a widely distributed marine picoprasinophyte (〈2 μm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core lightinput and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photo-synthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-02
    Description: Protists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases. A better understanding of these newly discovered genes will lead to a deeper appreciation of the functional diversity and metabolic processes in the ocean. In this Review, we summarize recent developments in our understanding of the ecology, physiology and evolution of protists, derived from transcriptomic studies of cultured strains and natural communities, and discuss how these novel large-scale genetic datasets will be used in the future. © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-02
    Description: Marine algae perform approximately half of global carbon fixation, but their growth is often limited by the availability of phosphate or other nutrients 1,2 . As oceans warm, the area of phosphate-limited surface waters is predicted to increase, resulting in ocean desertification 3,4 . Understanding the responses of key eukaryotic phytoplankton to nutrient limitation is therefore critical 5,6 . We used advanced photo-bioreactors to investigate how the widespread marine green alga Micromonas commoda grows under transitions from replete nutrients to chronic phosphate limitation and subsequent relief, analysing photosystem changes and broad cellular responses using proteomics, transcriptomics and biophysical measurements. We find that physiological and protein expression responses previously attributed to stress are critical to supporting stable exponential growth when phosphate is limiting. Unexpectedly, the abundance of most proteins involved in light harvesting does not change, but an ancient light-harvesting-related protein, LHCSR, is induced and dissipates damaging excess absorbed light as heat throughout phosphate limitation. Concurrently, a suite of uncharacterized proteins with narrow phylogenetic distributions increase multifold. Notably, of the proteins that exhibit significant changes, 70 are not differentially expressed at the mRNA transcript level, highlighting the importance of post-transcriptional processes in microbial eukaryotes. Nevertheless, transcript-protein pairs with concordant changes were identified that will enable more robust interpretation of eukaryotic phytoplankton responses in the field from metatranscriptomic studies. Our results show that P-limited Micromonas responds quickly to a fresh pulse of phosphate by rapidly increasing replication, and that the protein network associated with this ability is composed of both conserved and phylogenetically recent proteome systems that promote dynamic phosphate homeostasis. That an ancient mechanism for mitigating light stress is central to sustaining growth during extended phosphate limitation highlights the possibility of interactive effects arising from combined stressors under ocean change, which could reduce the efficacy of algal strategies for optimizing marine photosynthesis. © 2018 The Author(s).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: Prasinophytes are widespread marine algae for which responses to nutrient limitation and viral infection are not well understood. We studied the picoprasinophyte, Micromonas pusilla, grown under phosphate‐replete (0.65 ± 0.07 d−1) and 10‐fold lower (low)‐phosphate (0.11 ± 0.04 d−1) conditions, and infected by the phycodnavirus MpV‐SP1. Expression of 17% of Micromonas genes in uninfected cells differed by 〉1.5‐fold (q 〈 0.01) between nutrient conditions, with genes for P‐metabolism and the uniquely‐enriched Sel1‐like repeat (SLR) family having higher relative transcript abundances, while phospholipid‐synthesis genes were lower in low‐P than P‐replete. Approximately 70% (P‐replete) and 30% (low‐P) of cells were lysed 24 h post‐infection, and expression of ≤5.8% of host genes changed relative to uninfected treatments. Host genes for CAZymes and glycolysis were activated by infection, supporting importance in viral production, which was significantly lower in slower growing (low‐P) hosts. All MpV‐SP1 genes were expressed, and our analyses suggest responses to differing host‐phosphate backgrounds involve few viral genes, while the temporal program of infection involves many more, and is largely independent of host‐phosphate background. Our study (i) identifies genes previously unassociated with nutrient acclimation or viral infection, (ii) provides insights into the temporal program of prasinovirus gene expression by hosts and (iii) establishes cell biological aspects of an ecologically important host‐prasinovirus system that differ from other marine algal‐virus systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...