ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-23
    Description: The performance of an explicit algebraic stress model (EASM) is assessed in predicting the turbulent flow and forced heat transfer in both straight and wavy ducts, with rectangular, trapezoidal and triangular cross-sections, under fully developed conditions. A comparison of secondary flow patterns. including velocity vectors and velocity and temperature contours, are shown in order to study the effect of waviness on flow dynamics, and comparisons between the hydraulic parameters. Fanning friction factor and Nusselt number, are also presented. In all cases. isothermal conditions are imposed on the duct walls, and the turbulent heat fluxes are modeled using gradient-diffusion type models. The formulation is valid for Reynolds numbers up to 10(exp 5) and this minimizes the need for wall functions that have been used with mixed success in previous studies of complex duct flows. In addition, the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Criteria in terms of heat transfer and friction factor needed to choose the optimal wavy duct cross-section for industrial applications among the ones considered are discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Journal of Heat and Fluid Flow (ISSN 0142-727X); Volume 22; 381-392
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-11
    Description: The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds numbers is studied through an analysis of the transport equations for the mean disturbance kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients on the disturbance dynamics are also included in the analysis Unlike the fully turbulent regime where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to the wall, the early stage transition regime fluctuations studied here are influenced cross the boundary layer by the solid boundary. The dominating dynamics in the disturbance kinetic energy and dissipation rate equations are described. These results are then used to formulate transition-sensitized turbulent transport equations, which are solved in a two-step process and applied to zero-pressure-gradient flow over a flat plate. Computed results are in good agreement with experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2005-0523
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The flow over the zero-pressure-gradient So-Mellor convex curved wall is simulated using the Navier-Stokes equations. An inviscid effective outer wall shape, undocumented in the experiment, is obtained by using an adjoint optimization method with the desired pressure distribution on the inner wall as the cost function. Using this wall shape with a Navier-Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient can be evaluated. The one-equation Spalart-Allmaras turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model possesses no heuristic functions or additional constants. It lowers slightly the computed skin friction coefficient and the turbulent stress levels for this case (in better agreement with experiment), but the effect on computed velocity profiles is very small.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2001-0725 , Aerospace Sciences; Jan 08, 2001 - Jan 11, 2001; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of the underlying assumptions used in the development of algebraic stress models are investigated and compared with the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near the convex wall.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-0157 , AIAA Journal; 38; 8; 1394-1402|Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The primary challenge in designing a full scale lithium-ion (Li-ion) battery system is safety under both normal operating as well as abusive conditions. The normal conditions involve expected charge/discharge cycles and it is known that heat evolves in batteries during those cycles. This is a major concern in the design for high power applications and careful thermal management is necessary to alleviate this concern. An emerging thermal measurement technology, such as the electrochemical calorimetric of batteries, will aid in the development of advanced, safe battery system. To support this technology, several "commercial-off-the-shelf" (COTS) Li-ion cells with different chemistries and designs are being evaluated for different cycling regimes at a given operating temperature. The Accelerated Rate Calorimeter (ARC)-Arbin cycler setup is used to measure the temperature, voltage, and current of the cells at different charge/discharge rates. Initial results demonstrated good cell cyclability. During the cycle testing, the cell exhibited an endothermic cooling in the initial part of the charge cycle. The discharge portion of the cycle is exothermic during the entire discharge period. The presence of an endothermic reaction indicates a significant entropy effect during the beginning of charge cycle. Further studies will be performed to understand the thermal characteristics of the Li-ion cells at the different operating conditions. The effects on the thermal response on cell aging and states-of-charge will also be identified.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 10th Electrochemical Power Sources Symposium; Aug 20, 2007 - Aug 23, 2007; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: This paper summarizes the Explicit Algebraic Stress Model in k-omega form (EASM-ko) and in k-epsilon form (EASM-ke) in the Reynolds-averaged Navier-Stokes code CFL3D. These models have been actively used over the last several years in CFL3D, and have undergone some minor modifications during that time. Details of the equations and method for coding the latest versions of the models are given, and numerous validation cases are presented. This paper serves as a validation archive for these models.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2003-212431 , L-18311 , NAS 1.15:212431
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...