ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-26
    Description: The RAS/MAPK (mitogen-activated protein kinase) signalling pathway is frequently deregulated in non-small-cell lung cancer, often through KRAS activating mutations. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations. We recently showed that advanced lung tumours from Kras(G12D/+);p53-null mice frequently exhibit Kras(G12D) allelic enrichment (Kras(G12D)/Kras(wild-type) 〉 1) (ref. 7), implying that mutant Kras copy gains are positively selected during progression. Here we show, through a comprehensive analysis of mutant Kras homozygous and heterozygous mouse embryonic fibroblasts and lung cancer cells, that these genotypes are phenotypically distinct. In particular, Kras(G12D/G12D) cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the tricarboxylic acid cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous non-small-cell lung cancer cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of Kras(G12D) copy gain), but not in the corresponding early tumours (Kras(G12D) heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprising two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated on the basis of their relative mutant allelic content. We also provide the first, to our knowledge, in vivo evidence of metabolic rewiring during lung cancer malignant progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kerr, Emma M -- Gaude, Edoardo -- Turrell, Frances K -- Frezza, Christian -- Martins, Carla P -- MC_UU_12022/4/Medical Research Council/United Kingdom -- MC_UU_12022/6/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):110-3. doi: 10.1038/nature16967. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909577" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Carcinoma, Non-Small-Cell Lung/drug therapy/genetics/metabolism/pathology ; Cell Line, Tumor ; Cell Transformation, Neoplastic/drug effects/genetics/metabolism/pathology ; Citric Acid Cycle ; DNA Copy Number Variations/*genetics ; Disease Progression ; Female ; Fibroblasts/metabolism ; Genes, ras/*genetics ; Genotype ; Glucose/*metabolism ; Glutathione/biosynthesis/metabolism ; *Glycolysis ; Lung Neoplasms/*drug therapy/genetics/*metabolism/pathology ; Male ; Mice ; Mutation/*genetics ; Oxidation-Reduction ; Phenotype ; Prognosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...