ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-12-07
    Description: The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D-induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8(+) T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4(+) and CD8(+) T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Khan, Nooruddin -- Nakaya, Helder I -- Li, Shuzhao -- Loebbermann, Jens -- Maddur, Mohan S -- Park, Youngja -- Jones, Dean P -- Chappert, Pascal -- Davoust, Jean -- Weiss, David S -- Virgin, Herbert W -- Ron, David -- Pulendran, Bali -- 084812/Wellcome Trust/United Kingdom -- 084812/Z/08/Z/Wellcome Trust/United Kingdom -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R56 AI048638/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):313-7. doi: 10.1126/science.1246829. Epub 2013 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24310610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Cricetinae ; Dendritic Cells/enzymology/*immunology ; Enzyme Activation ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microtubule-Associated Proteins/genetics ; Protein-Serine-Threonine Kinases/*biosynthesis/genetics ; Yellow Fever Vaccine/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-28
    Description: Mammals are coinfected by multiple pathogens that interact through unknown mechanisms. We found that helminth infection, characterized by the induction of the cytokine interleukin-4 (IL-4) and the activation of the transcription factor Stat6, reactivated murine gamma-herpesvirus infection in vivo. IL-4 promoted viral replication and blocked the antiviral effects of interferon-gamma (IFNgamma) by inducing Stat6 binding to the promoter for an important viral transcriptional transactivator. IL-4 also reactivated human Kaposi's sarcoma-associated herpesvirus from latency in cultured cells. Exogenous IL-4 plus blockade of IFNgamma reactivated latent murine gamma-herpesvirus infection in vivo, suggesting a "two-signal" model for viral reactivation. Thus, chronic herpesvirus infection, a component of the mammalian virome, is regulated by the counterpoised actions of multiple cytokines on viral promoters that have evolved to sense host immune status.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531374/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531374/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reese, T A -- Wakeman, B S -- Choi, H S -- Hufford, M M -- Huang, S C -- Zhang, X -- Buck, M D -- Jezewski, A -- Kambal, A -- Liu, C Y -- Goel, G -- Murray, P J -- Xavier, R J -- Kaplan, M H -- Renne, R -- Speck, S H -- Artyomov, M N -- Pearce, E J -- Virgin, H W -- AI032573/AI/NIAID NIH HHS/ -- AI084887/AI/NIAID NIH HHS/ -- CA119917/CA/NCI NIH HHS/ -- CA164062/CA/NCI NIH HHS/ -- CA52004/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01 AI032573/AI/NIAID NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- R01 AI095282/AI/NIAID NIH HHS/ -- R01 CA052004/CA/NCI NIH HHS/ -- R01 CA119917/CA/NCI NIH HHS/ -- R01 CA164062/CA/NCI NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):573-7. doi: 10.1126/science.1254517. Epub 2014 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Emory University Vaccine Center, Atlanta, GA 30322, USA. ; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA. ; Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. ; Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. ; Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24968940" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gammaherpesvirinae/genetics/*physiology ; Gene Expression Regulation, Viral ; Herpesvirus 8, Human/genetics/*physiology ; Humans ; Interferon-gamma/*immunology/pharmacology ; Interleukin-4/*metabolism/pharmacology ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Nematospiroides dubius/immunology ; Ovum/immunology ; Promoter Regions, Genetic ; STAT6 Transcription Factor/*metabolism ; Schistosoma mansoni/*immunology ; Schistosomiasis mansoni/*immunology ; Strongylida Infections/immunology ; Virus Activation/drug effects/genetics/*physiology ; Virus Latency/physiology ; Virus Replication/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-02
    Description: The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immunomodulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth coinfection. Helminth coinfection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice, but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immunomodulation occurs independently of changes in the microbiota but is dependent on Ym1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548887/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548887/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osborne, Lisa C -- Monticelli, Laurel A -- Nice, Timothy J -- Sutherland, Tara E -- Siracusa, Mark C -- Hepworth, Matthew R -- Tomov, Vesselin T -- Kobuley, Dmytro -- Tran, Sara V -- Bittinger, Kyle -- Bailey, Aubrey G -- Laughlin, Alice L -- Boucher, Jean-Luc -- Wherry, E John -- Bushman, Frederic D -- Allen, Judith E -- Virgin, Herbert W -- Artis, David -- 095831/Wellcome Trust/United Kingdom -- 2-P30 CA016520/CA/NCI NIH HHS/ -- 5T32A100716334/PHS HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI082630/AI/NIAID NIH HHS/ -- AI083022/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- AI106697/AI/NIAID NIH HHS/ -- F32 AI085828/AI/NIAID NIH HHS/ -- F32-AI085828/AI/NIAID NIH HHS/ -- HHSN272201300006C/PHS HHS/ -- K08 DK097301/DK/NIDDK NIH HHS/ -- K08-DK097301/DK/NIDDK NIH HHS/ -- MR/J001929/1/Medical Research Council/United Kingdom -- P01 AI106697/AI/NIAID NIH HHS/ -- P30-AI045008/AI/NIAID NIH HHS/ -- P30-DK050306/DK/NIDDK NIH HHS/ -- R01 AI 084887/AI/NIAID NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- R21 AI087990/AI/NIAID NIH HHS/ -- T32-AI007532/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):578-82. doi: 10.1126/science.1256942. Epub 2014 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK. ; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Universite Paris Descartes, Paris, France. ; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. dartis@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082704" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/immunology ; Caliciviridae Infections/*immunology ; Coinfection/*immunology/microbiology/parasitology ; Gastroenteritis/*immunology/virology ; Germ-Free Life ; *Immunomodulation ; Intestines/immunology/microbiology/virology ; Lectins/*immunology ; Macrophage Activation ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Microbiota/*immunology ; Norovirus/*immunology ; Trichinella/*immunology ; Trichinellosis/*immunology ; beta-N-Acetylhexosaminidases/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-29
    Description: Norovirus gastroenteritis is a major public health burden worldwide. Although fecal shedding is important for transmission of enteric viruses, little is known about the immune factors that restrict persistent enteric infection. We report here that although the cytokines interferon-alpha (IFN-alpha) and IFN-beta prevented the systemic spread of murine norovirus (MNoV), only IFN-lambda controlled persistent enteric infection. Infection-dependent induction of IFN-lambda was governed by the MNoV capsid protein and correlated with diminished enteric persistence. Treatment of established infection with IFN-lambda cured mice in a manner requiring nonhematopoietic cell expression of the IFN-lambda receptor, Ifnlr1, and independent of adaptive immunity. These results suggest the therapeutic potential of IFN-lambda for curing virus infections in the gastrointestinal tract.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nice, Timothy J -- Baldridge, Megan T -- McCune, Broc T -- Norman, Jason M -- Lazear, Helen M -- Artyomov, Maxim -- Diamond, Michael S -- Virgin, Herbert W -- 5T32A100716334/PHS HHS/ -- 5T32AI007163/AI/NIAID NIH HHS/ -- 5T32CA009547/CA/NCI NIH HHS/ -- F31 CA177194/CA/NCI NIH HHS/ -- F31CA177194-01/CA/NCI NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- T32 CA009547/CA/NCI NIH HHS/ -- U19 AI083019/AI/NIAID NIH HHS/ -- U19 AI106772/AI/NIAID NIH HHS/ -- U19 AI109725/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):269-73. doi: 10.1126/science.1258100. Epub 2014 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25431489" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Animals ; Caliciviridae Infections/*drug therapy/*immunology/virology ; Capsid Proteins/immunology/metabolism ; Cells, Cultured ; Cytokines/biosynthesis/*immunology/*therapeutic use ; Feces/virology ; Gastroenteritis/drug therapy/*immunology/virology ; Immunity, Innate ; Interferon-alpha/biosynthesis/immunology ; Interferon-beta/biosynthesis/immunology ; Mice ; Mice, Inbred C57BL ; Norovirus/*immunology/*physiology ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-29
    Description: The capacity of human norovirus (NoV), which causes 〉90% of global epidemic nonbacterial gastroenteritis, to infect a subset of people persistently may contribute to its spread. How such enteric viruses establish persistent infections is not well understood. We found that antibiotics prevented persistent murine norovirus (MNoV) infection, an effect that was reversed by replenishment of the bacterial microbiota. Antibiotics did not prevent tissue infection or affect systemic viral replication but acted specifically in the intestine. The receptor for the antiviral cytokine interferon-lambda, Ifnlr1, as well as the transcription factors Stat1 and Irf3, were required for antibiotics to prevent viral persistence. Thus, the bacterial microbiome fosters enteric viral persistence in a manner counteracted by specific components of the innate immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldridge, Megan T -- Nice, Timothy J -- McCune, Broc T -- Yokoyama, Christine C -- Kambal, Amal -- Wheadon, Michael -- Diamond, Michael S -- Ivanova, Yulia -- Artyomov, Maxim -- Virgin, Herbert W -- 1F31CA177194/CA/NCI NIH HHS/ -- 5T32AI007163/AI/NIAID NIH HHS/ -- 5T32CA009547/CA/NCI NIH HHS/ -- F31 CA177194/CA/NCI NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- T32 CA009547/CA/NCI NIH HHS/ -- U19 AI083019/AI/NIAID NIH HHS/ -- U19 AI106772/AI/NIAID NIH HHS/ -- U19 AI109725/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):266-9. doi: 10.1126/science.1258025. Epub 2014 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25431490" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Caliciviridae Infections/drug therapy/immunology/microbiology/*virology ; Cytokines/*physiology ; Female ; Gastroenteritis/drug therapy/immunology/microbiology/*virology ; Intestines/*microbiology/virology ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; *Microbiota/drug effects ; Norovirus/immunology/*physiology ; Receptors, Cytokine/genetics/metabolism ; Signal Transduction ; *Symbiosis ; Viral Load ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-04
    Description: Preclinical studies of viral vector-based HIV-1 vaccine candidates have previously shown partial protection against neutralization-resistant virus challenges in rhesus monkeys. In this study, we evaluated the protective efficacy of adenovirus serotype 26 (Ad26) vector priming followed by purified envelope (Env) glycoprotein boosting. Rhesus monkeys primed with Ad26 vectors expressing SIVsmE543 Env, Gag, and Pol and boosted with AS01B-adjuvanted SIVmac32H Env gp140 demonstrated complete protection in 50% of vaccinated animals against a series of repeated, heterologous, intrarectal SIVmac251 challenges that infected all controls. Protective efficacy correlated with the functionality of Env-specific antibody responses. Comparable protection was also observed with a similar Ad/Env vaccine against repeated, heterologous, intrarectal SHIV-SF162P3 challenges. These data demonstrate robust protection by Ad/Env vaccines against acquisition of neutralization-resistant virus challenges in rhesus monkeys.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653134/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653134/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barouch, Dan H -- Alter, Galit -- Broge, Thomas -- Linde, Caitlyn -- Ackerman, Margaret E -- Brown, Eric P -- Borducchi, Erica N -- Smith, Kaitlin M -- Nkolola, Joseph P -- Liu, Jinyan -- Shields, Jennifer -- Parenteau, Lily -- Whitney, James B -- Abbink, Peter -- Ng'ang'a, David M -- Seaman, Michael S -- Lavine, Christy L -- Perry, James R -- Li, Wenjun -- Colantonio, Arnaud D -- Lewis, Mark G -- Chen, Bing -- Wenschuh, Holger -- Reimer, Ulf -- Piatak, Michael -- Lifson, Jeffrey D -- Handley, Scott A -- Virgin, Herbert W -- Koutsoukos, Marguerite -- Lorin, Clarisse -- Voss, Gerald -- Weijtens, Mo -- Pau, Maria G -- Schuitemaker, Hanneke -- AI060354/AI/NIAID NIH HHS/ -- AI078526/AI/NIAID NIH HHS/ -- AI080289/AI/NIAID NIH HHS/ -- AI084794/AI/NIAID NIH HHS/ -- AI095985/AI/NIAID NIH HHS/ -- AI096040/AI/NIAID NIH HHS/ -- AI102660/AI/NIAID NIH HHS/ -- AI102691/AI/NIAID NIH HHS/ -- OD011170/OD/NIH HHS/ -- P30 AI060354/AI/NIAID NIH HHS/ -- R01 AI080289/AI/NIAID NIH HHS/ -- R01 AI084794/AI/NIAID NIH HHS/ -- R01 AI102660/AI/NIAID NIH HHS/ -- R01 AI102691/AI/NIAID NIH HHS/ -- R01 OD011170/OD/NIH HHS/ -- R37 AI080289/AI/NIAID NIH HHS/ -- U19 AI078526/AI/NIAID NIH HHS/ -- U19 AI095985/AI/NIAID NIH HHS/ -- U19 AI096040/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):320-4. doi: 10.1126/science.aab3886. Epub 2015 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA. dbarouch@bidmc.harvard.edu. ; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA. ; Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA. ; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. ; University of Massachusetts Medical School, Worcester, MA 01605, USA. ; New England Primate Research Center, Southborough, MA 01772, USA. ; Bioqual, Rockville, MD 20852, USA. ; Children's Hospital, Boston, MA 02115, USA. ; JPT Peptide Technologies GmbH, 12489 Berlin, Germany. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. ; Washington University School of Medicine, St. Louis, MO 63110, USA. ; GSK Vaccines, 1330 Rixensart, Belgium. ; Janssen Infectious Diseases and Vaccines (formerly Crucell), 2301 Leiden, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26138104" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Adenovirus Vaccines/*immunology ; Adoptive Transfer ; Animals ; Antibodies, Neutralizing/immunology ; Female ; Gene Products, env/*immunology ; Gene Products, gag/immunology ; Gene Products, pol/immunology ; Genetic Vectors/immunology ; HIV-1/*immunology ; Histocompatibility Antigens Class I/genetics/immunology ; Immunization, Secondary ; Macaca mulatta ; Male ; SAIDS Vaccines/*immunology ; Simian Acquired Immunodeficiency Syndrome/*prevention & control ; Simian Immunodeficiency Virus/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-28
    Description: Viruses that infect the intestine include major human pathogens (retroviruses, noroviruses, rotaviruses, astroviruses, picornaviruses, adenoviruses, herpesviruses) that constitute a serious public health problem worldwide. These viral pathogens are members of a large, complex viral community inhabiting the intestine termed "the enteric virome." Enteric viruses have intimate functional and genetic relationships with both the host and other microbial constituents that inhabit the intestine, such as the bacterial microbiota, their associated phages, helminthes, and fungi, which together constitute the microbiome. Emerging data indicate that enteric viruses regulate, and are in turn regulated by, these other microbes through a series of processes termed "transkingdom interactions." This represents a changing paradigm in intestinal immunity to viral infection. Here we review recent advances in the field and propose new ways in which to conceptualize this important area.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751997/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751997/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfeiffer, Julie K -- Virgin, Herbert W -- R01 AI074668/AI/NIAID NIH HHS/ -- R01 AI111918/AI/NIAID NIH HHS/ -- R01 DK 101354/DK/NIDDK NIH HHS/ -- R21 AI114927/AI/NIAID NIH HHS/ -- R24 OD019793/OD/NIH HHS/ -- U19 AI109725/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270). pii: aad5872. doi: 10.1126/science.aad5872. Epub 2016 Jan 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. julie.pfeiffer@utsouthwestern.edu virgin@wustl.edu. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. julie.pfeiffer@utsouthwestern.edu virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816384" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/immunology/virology ; Bacteriophages/physiology ; Fungi/immunology ; Host-Pathogen Interactions/immunology ; Humans ; Intestinal Diseases/*immunology/*virology ; Intestines/*immunology/*virology ; Microbiota/*immunology ; Virus Diseases/*immunology ; Viruses/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018
    Description: 〈p〉During the process of cross-presentation, viral or tumor-derived antigens are presented to CD8〈sup〉+〈/sup〉 T cells by 〈i〉Batf3-〈/i〉dependent CD8α〈sup〉+〈/sup〉/XCR1〈sup〉+〈/sup〉 classical dendritic cells (cDC1s). We designed a functional CRISPR screen for previously unknown regulators of cross-presentation, and identified the BEACH domain–containing protein WDFY4 as essential for cross-presentation of cell-associated antigens by cDC1s in mice. However, WDFY4 was not required for major histocompatibility complex class II presentation, nor for cross-presentation by monocyte-derived dendritic cells. In contrast to 〈i〉Batf3〈/i〉〈sup〉–/–〈/sup〉 mice, 〈i〉Wdfy4〈/i〉〈sup〉–/–〈/sup〉 mice displayed normal lymphoid and nonlymphoid cDC1 populations that produce interleukin-12 and protect against 〈i〉Toxoplasma gondii〈/i〉 infection. However, similar to 〈i〉Batf3〈/i〉〈sup〉–/–〈/sup〉 mice, 〈i〉Wdfy4〈/i〉〈sup〉–/–〈/sup〉 mice failed to prime virus-specific CD8〈sup〉+〈/sup〉 T cells in vivo or induce tumor rejection, revealing a critical role for cross-presentation in antiviral and antitumor immunity.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-09
    Description: During the process of cross-presentation, viral or tumor-derived antigens are presented to CD8 + T cells by Batf3- dependent CD8α + /XCR1 + classical dendritic cells (cDC1s). We designed a functional CRISPR screen for previously unknown regulators of cross-presentation, and identified the BEACH domain–containing protein WDFY4 as essential for cross-presentation of cell-associated antigens by cDC1s in mice. However, WDFY4 was not required for major histocompatibility complex class II presentation, nor for cross-presentation by monocyte-derived dendritic cells. In contrast to Batf3 –/– mice, Wdfy4 –/– mice displayed normal lymphoid and nonlymphoid cDC1 populations that produce interleukin-12 and protect against Toxoplasma gondii infection. However, similar to Batf3 –/– mice, Wdfy4 –/– mice failed to prime virus-specific CD8 + T cells in vivo or induce tumor rejection, revealing a critical role for cross-presentation in antiviral and antitumor immunity.
    Keywords: Immunology, Medicine, Diseases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-13
    Description: Complex interactions between host immunity and the microbiome regulate norovirus infection. However, the mechanism of host immune promotion of enteric virus infection remains obscure. The cellular tropism of noroviruses is also unknown. Recently, we identified CD300lf as a murine norovirus (MNoV) receptor. In this study, we have shown that tuft cells, a rare type of intestinal epithelial cell, express CD300lf and are the target cell for MNoV in the mouse intestine. We found that type 2 cytokines, which induce tuft cell proliferation, promote MNoV infection in vivo. These cytokines can replace the effect of commensal microbiota in promoting virus infection. Our work thus provides insight into how the immune system and microbes can coordinately promote enteric viral infection.
    Keywords: Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...