ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-12
    Description: A medical grade nitrous oxide (N2O) and gaseous oxygen (GOX) “Nytrox” blend is investigated as a volumetrically-efficient replacement for GOX in SmallSat-scale hybrid propulsion systems. Combined with 3-D printed acrylonitrile butadiene styrene (ABS), the propellants represent a significantly safer, but superior performing, alternative to environmentally-unsustainable spacecraft propellants like hydrazine. In a manner analogous to the creation of soda-water using dissolved carbon dioxide, Nytrox is created by bubbling GOX under pressure into N2O until the solution reaches saturation. Oxygen in the ullage dilutes N2O vapor and increases the required decomposition energy barrier by several orders of magnitude. Thus, risks associated with inadvertent thermal or catalytic N2O decomposition are virtually eliminated. Preliminary results of a test-and-evaluation campaign are reported. A small spacecraft thruster is first tested using gaseous oxygen and 3-D printed ABS as the baseline propellants. Tests were then repeated using Nytrox as a “drop-in” replacement for GOX. Parameters compared include ignition reliability, latency, initiation energy, thrust coefficient, characteristic velocity, specific impulse, combustion efficiency, and fuel regression rate. Tests demonstrate Nytrox as an effective replacement for GOX, exhibiting a slightly reduced specific impulse, but with significantly higher volumetric efficiency. Vacuum specific impulse exceeding 300 s is reported. Future research topics are recommended.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-17
    Description: Airplane design studies have developed configuration concepts that may produce lower sonic boom annoyance levels. Since lower noise designs differ significantly from other HSCT designs, it is necessary to accurately assess their potential before HSCT final configuration decisions are made. Flight tests to demonstrate lower noise design capability by modifying an existing airframe have been proposed for the Mach 3 SR-71 reconnaissance airplane. To support the modified SR-71 proposal, baseline in-flight measurements were made of the unmodified aircraft. These measurements of SR-71 near-field sonic boom signatures were obtained by an F-16XL probe airplane at flightpath separation distances ranging from approximately 740 to 40 ft. This paper discusses the methods used to gather and analyze the flight data, and makes comparisons of these flight data with CFD results from Douglas Aircraft Corporation and NASA Langley Research Center. The CFD solutions were obtained for the near-field flow about the SR-71, and then propagated to the flight test measurement location using the program MDBOOM.
    Keywords: Aircraft Design, Testing and Performance
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 171-197; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Keywords: AIRCRAFT INSTRUMENTATION
    Type: Journal of Aircraft (ISSN 0021-8669); 29; 5, Se; 915-919
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The HI-FADS system design is an evolution of the FADS systems (e.g., Larson et al., 1980, 1987), which emphasizes the entire airdata system development. This paper describes the HI-FADS measurement system, with particular consideration given to the basic measurement hardware and the development of the HI-FADS aerodynamic model and the basic nonlinear regression algorithm. Algorithm initialization techniques are developed, and potential algorithm divergence problems are discussed. Data derived from HI-FADS flight tests are used to demonstrate the system accuracies and to illustrate the developed concepts and methods.
    Keywords: AIRCRAFT INSTRUMENTATION
    Type: In: Control and dynamic systems. Vol. 52 - Integrated technology methods and applications in aerospace systems design (A94-12611 02-01); p. 453-511.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: Increasingly, aircraft system designs require that aerodynamic parameters derived from pneumatic measurements be employed as control-system feedbacks. Such high frequency pressure measurements' accuracy is compromised by pressure distortion due to frictional attenuation and pneumatic resonance within the sensing system. A pneumatic distortion model is here formulated and reduced to a low-order state-variable model which retains most of the full model's dynamic characteristics. This reduced-order model is coupled with standard results from minimum variance estimation theory to develop an algorithm to compensate for pneumatic-distortion effects.
    Keywords: SYSTEMS ANALYSIS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: In this paper a technique of compensating for pneumatic distortion in aircraft surface pressure sensing devices is developed. The compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Typically, most of the distortion occurs within the pneumatic tubing used to transmit pressure impulses from the surface of the aircraft to the measurement transducer. This paper develops a second-order distortion model that accurately describes the behavior of the primary wave harmonic of the pneumatic tubing. The model is expressed in state-variable form and is coupled with standard results from minimum-variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data. Covariance selection and filter-tuning examples are presented. Results presented verify that, given appropriate covariance magnitudes, the algorithms accurately reconstruct surface pressure values from remotely sensed pressure measurements.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Aircraft (ISSN 0021-8669); 28; 828-836
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.
    Keywords: Aerodynamics
    Type: NASA-TM-4728 , AIAA Paper 96-0563 , H-2083 , NAS 1.15:4728
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A prototype real-time flush airdata sensing (RT-FADS) system has been developed and flight tested at the NASA Dryden Flight Research Center. This system uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters in real time using nonlinear regression. The algorithm is robust to sensor failures and noise in the measured pressures. The RT-FADS system has been calibrated using inertial trajectory measurements that were bootstrapped for atmospheric conditions using meteorological data. Mach numbers as high as 1.6 and angles of attack greater than 45 deg have been tested. The system performance has been evaluated by comparing the RT-FADS to the ship system airdata computer measurements to give a quantitative evaluation relative to an accepted measurement standard. Nominal agreements of approximately 0.003 in Mach number and 0.20 deg in angle of attack and angle of sideslip have been achieved.
    Keywords: AIRCRAFT INSTRUMENTATION
    Type: NASA-TM-104314 , H-2053 , NAS 1.15:104314
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A postflight FORTRAN program called 'radar' reads and analyzes ground-based radar data. The output includes position, velocity, and acceleration parameters. Air data parameters are also provided if atmospheric characteristics are input. This program can read data from any radar in three formats. Geocentric Cartesian position can also be used as input, which may be from an inertial navigation or Global Positioning System. Options include spike removal, data filtering, and atmospheric refraction corrections. Atmospheric refraction can be corrected using the quick White Sands method or the gradient refraction method, which allows accurate analysis of very low elevation angle and long-range data. Refraction properties are extrapolated from surface conditions, or a measured profile may be input. Velocity is determined by differentiating position. Accelerations are determined by differentiating velocity. This paper describes the algorithms used, gives the operational details, and discusses the limitations and errors of the program. Appendices A through E contain the derivations for these algorithms. These derivations include an improvement in speed to the exact solution for geodetic altitude, an improved algorithm over earlier versions for determining scale height, a truncation algorithm for speeding up the gradient refraction method, and a refinement of the coefficients used in the White Sands method for Edwards AFB, California. Appendix G contains the nomenclature.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-TP-3430 , H-1892 , NAS 1.60:3430
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A nonintrusive high-angle-of-attack flush airdata sensing system was installed and flight tested in the F-18 High Alpha Research Vehicle. This system consists of a matrix of 25 pressure orifices arranged in concentric circles on the nose of the vehicle to determine angles of attack and sideslip, Mach number, and pressure altitude. During the course of the flight tests, it was determined that satisfactory results could be achieved using a subset of just nine ports.
    Keywords: AIRCRAFT INSTRUMENTATION
    Type: SAE PAPER 912142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...