ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 1126–1147, doi:10.1175/JCLI-D-14-00285.1.
    Description: The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
    Description: We gratefully acknowledge funding provided by NSF to DS and MN (AGS CLD 1035325) and Y-OK and CF (AGS CLD 1035423) and by DOE to Y-OK (DE-SC0007052).
    Description: 2015-08-01
    Keywords: Atmosphere-ocean interaction ; Atmospheric circulation ; Boundary layer ; Cyclogenesis/cyclolysis ; Diabatic heating ; Extratropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Geophysical Research 84 (1979): 769-776.
    Description: The relation between internal wave variability and larger and smaller scales of motion is investigated, using the IWEX data set. To investigate the role of internal waves in the vertical diffusion of large scale momentum, the time variability of the vertical flux of horizontal internal wave momentum (estimated from temperature and current data) is compared to that of the mean vertical shear. It is found that internal waves cannot cause a vertical viscosity as large as proposed by Müller (1976), but that the data are too noisy to detect a possible wave‐induced viscosity in absolute value of the order of 10−2 m2 s−1 or less. Similarities in the time behavior of the total internal wave energy and that of the square mean vertical shear suggest that some kind of dynamical coupling exists between internal waves and larger scale flows. There is some evidence that the level of temperature finestructure activity also varies in a related way. An analysis of CTD station data taken during Mode demonstrates the mappability of the finestructure activity, and again suggests a relation with the geostrophic eddy flow.
    Description: Prepared for the Office of Naval Research under Contracts N00014-74-C-0262; NR 083- 004 , N00014-76-C-0197: NR 083-400 and for the National Science Foundation under Grant OCE 74-19782 .
    Keywords: Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...