ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Digilabs Pub., Bari, Italy
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2017-04-04
    Beschreibung: The Florina basin, being the main commercial source of CO2 in Greece, represents a good natural analogue for the study of the impact of geologic carbon storage. It is part of a NNW-SSE trending graben filled with ~600 m Plio-Pleistocene fluvial and lacustrine deposits. The area is characterized by the upflow of great quantities of geogenic CO2 probably associated to presently extinct Quaternary volcanic activity. The gas originates mainly from crustal sources but has also a minor (~10%) mantle contribution. This strong upflow of nearly pure CO2 can be recognized in industrially exploitable gas reservoirs, high pCO2 shallow groundwaters and surface gas manifestations. But the increased CO2 content has a deleterious impact on groundwater quality. Due to the increased aggressiveness of the low-pH CO2-rich waters with respect to the aquifer rocks, EU drinking water limits are exceed for many parameters (e.g. Electric conductivity, pH, Na+, SO42-, F-, Al, B, Ba, Fe, Mn and Ni). Considering the additional impact of widespread agricultural activities, which is recognizable in sometimes elevated NO3- contents, only few of the sampled waters (4 out of 40) could be used for potable purposes. Aquifer waters are also characterized by high REE contents with ΣREE up to ~12 µg/l. Shale-normalized profiles show positive La and Y anomalies and Ce negative anomalies probably indicating a main derivation from iron oxyhydroxide dissolution. The positive Eu anomaly evidences also carbonate dissolution while the enrichment in HREE is probably due to the abundant presence of HCO3-, which increases HREE solubility through complexation. Future developments of carbon capture and storage programs in the nearby sedimentary basin of Ptolemais and Servia have to carefully take in account the possible deterioration of their groundwater resources due to CO2 leaks from the storage reservoirs.
    Beschreibung: Published
    Beschreibung: Bari, Italy
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): Trace elements ; REE ; CCS natural analogues ; Florina ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: Volcanoes are one of the major natural sources of several trace elements to the atmosphere: They contribute to atmospheric pollution by increasing the amount of reactive and greenhouse gases and aerosols. In particular, Mt. Etna is considered to be, on long-term average, the major global atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. For several months during the year (generally December-May), the summit of Mt. Etna is under a thick blanket of snow. This huge reservoir of frozen water, interacting with the volcanic plume, accumulates a great quantity of volcanogenic elements during the winter. Samples of snow were collected at different distances from summit craters along an 8 km radial transects, in the 2006 and 2007 winters. Each snow sample was analyzed for 37 elements in the laboratory using IC, ICP-OES and ICP-MS techniques. The impact of volcanic emissions is clearly detectable considering the opposite trends of pH and TDS (total dissolved solid) measured in snow samples with increasing distance from their “source”. The pH values range from 1.7 on the rim of the summit craters up to 7.6 at a distance of about 8 km, and TDS ranges from diluted samples (few mg/l) at distal sites, up to extremely concentrated samples (500 - 3500 mg/l) close to the emission vents. The acidity in precipitation around the volcano depends mainly on the concentrations of volcanogenic acid forming ions (SO2, HCl and HF), as well as on concentrations of mainly geogenic alkaline species, which may eventually neutralize the acidity. Regarding metals concentrations, there are orders of magnitude of difference between the different sites with decreasing values from the crater’s rim up to the farthest sites (5-8 km from craters). In particular three groups of elements were extremely enriched (many orders of magnitude higher) at the summit craters with respect to the distal samples: Halogens (Br, Cl, F, I) and S ascribable to volcanic gas contribution; Al, Fe and Ti deriving from magmatic silicate particulate; and elements such as Se, Cu, As, Bi, Cd, Tl, Pb and Hg which are highly mobile in the high temperature volcanic environment.
    Beschreibung: Published
    Beschreibung: Bari, Italy
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): Snow Chemistry ; Trace elements ; Etna ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 02. Cryosphere::02.02. Glaciers::02.02.09. Snow ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: Volcanic and geothermal areas are one of the major natural sources of sulphur gases to the atmosphere. Hydrogen sulphide (H2S) is a toxic gas mainly associated to geothermal systems while sulphur dioxide (SO2) is released in huge quantities from volcanoes characterized by open conduit activity. Apart from being one of the most impressive geodynamic expressions, volcanoes are also an important tourist attraction. During the summer season the number of tourists visiting the crateric areas each day is on average many tens at Stromboli, hundreds at Vulcano, Santorini and Nisyros and thousands at Etna. Touristic exploitation of active volcanic areas cannot exempt from warranting a reasonable security to the visiting persons. But while many risks in these areas have been since long time considered, gas hazard, a very subtle risk, is often disregarded. The atmospheric concentrations and dispersion pattern of naturally emitted SO2 were measured at three volcanoes of southern Italy (Etna, Vulcano and Stromboli) while that of H2S at four volcanic/geothermal areas of Greece (Sousaki, Milos, Santorini and Nisyros). Measurements were made with a network of passive samplers positioned at about 1.5 m above the ground, which gave time-integrated values for periods from few days to 1 month. Samplers were placed in zones of the volcanoes with high tourist frequentation. Measured concentrations and dispersion pattern depend on the strength of the source (craters, fumaroles), meteorological conditions and geomorphology of the area. At Etna, Vulcano, Stromboli and Nisyros measured concentrations reach values that are absolutely dangerous to people affected by bronchial asthma or lung diseases. But considering that these are average values over periods from few days up to one month, concentrations could have reached much higher peak values dangerous also to healthy people. The present study evidences a peculiar volcanic risk connected to the touristic exploitation of volcanic areas. Such risk is particularly enhanced at Etna where elderly and not perfectly healthy people can easily reach, with cableway and off-road vehicles, areas with dangerous SO2 concentrations.
    Beschreibung: Published
    Beschreibung: Bari, Italy
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): sulphur gases ; passive samplers ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-04-04
    Beschreibung: Biomonitoring may be defined as the use of organisms and biomaterials (biomonitors) to obtain informations on certain characteristics of a particular medium (atmosphere, hydrosphere etc.). In particular, mosses accumulate large amounts of trace metals, making them good bioaccumulators to estimate atmospheric pollution. The moss-bags technique, introduced in the early 1970’, has become very popular. Such active biomonitoring technique is particularly useful in highly polluted areas and has been extensively used in industrial and/or urban areas to examine deposition patterns and to recognize point sources of pollution. The main objective of this study, which represents the first application of the moss-bags technique in an active volcanic area, was to test its efficacy in such environment. Complementary objectives were: to determine the different behaviour and the areal dispersion of volcanogenic elements emitted from Mt. Etna; to characterize the morphology and mineralogy of particles transported in the plume-system, basing on microscopy investigation. A mixture of Sphagnum species was picked in a clean area, treated in laboratory (rinsed, dried and packed) and exposed in field for 1 month. Sites were chosen considering the prevailing wind at Mt. Etna’s summit. Milled samples were analyses for major and trace elements concentrations, after microwave digestion (HNO3 + H2O2), by ICP-MS and ICP-OES techniques. Morphology and mineralogy of volcanic particulate were investigated by using a SEM with EDS. Analyses clearly showed the efficacy of the moss-bags technique also in this peculiar environment. Several elements were strongly enriched in the mosses exposed to the volcanic emissions. The highest enrichment was measured close to the summit crater, but evidences of metals bioaccumulation were also found in down wind sites, at several km from the volcanic source. The accumulation factor (exposed/unexposed moss) allowed us to distinguish a group of elements (Tl, Bi, Se, Cu, As, Cd, S), which are highly mobile in the high temperature volcanic environment. Also alkali metals showed a significant increase in their concentrations, probably because of their affinity for the halide species carried by the volcanic plume. Microscopic observations evidenced sulphate and halide crystals on particles trapped by the mosses. Mosses exposed at sites directly fumigated by the volcanic plume showed crystal growth also directly on the moss surface.
    Beschreibung: Published
    Beschreibung: Bari, Italy
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): biomonitoring ; moss-bags ; trace elements ; Etna ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...