ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-01-20
    Description: Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2) is a satellite mission proposed in Japan to probe the middle and upper atmosphere (20–160 km). The main instrument is composed of 4 K cooled radiometers operating near 0.7 and 2 THz. It could measure the diurnal changes of the horizontal wind above 30 km, temperature above 20 km, ground-state atomic oxygen above 90 km and atmospheric density near the mesopause, as well as abundance of about 15 chemical species. In this study we have conducted simulations to assess the wind, temperature and density retrieval performance in the mesosphere and lower thermosphere (60–110 km) using the radiometer at 760 GHz. It contains lines of water vapor (H2O), molecular oxygen (O2) and nitric oxide (NO) that are the strongest signals measured with SMILES-2 at these altitudes. The Zeeman effect on the O2 line due to the geomagnetic field (B) is considered; otherwise, the retrieval errors would be underestimated by a factor of 2 above 90 km. The optimal configuration for the radiometer’s polarization is found to be vertical linear. Considering a retrieval vertical resolution of 2.5 km, the line-of-sight wind is retrieved with a precision of 2–5 m s−1 up to 90 km and 30 m s−1 at 110 km. Temperature and atmospheric density are retrieved with a precision better than 5 K and 7 % up to 90 km (30 K and 20 % at 110 km). Errors induced by uncertainties on the vector B are mitigated by retrieving it. The retrieval of B is described as a side-product of the mission. At high latitudes, precisions of 30–100 nT on the vertical component and 100–300 nT on the horizontal one could be obtained at 85 and 105 km (vertical resolution of 20 km). SMILES-2 could therefore provide the first measurements of B close to the electrojets' altitude, and the precision is enough to measure variations induced by solar storms in the auroral regions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-31
    Description: Stratospheric Inferred Winds (SIW) is a Swedish mini sub-millimeter limb sounder selected for the 2nd InnoSat platform, with launch planned for around 2022. It is intended to fill the altitude gap between 30 and 70 km in atmospheric wind measurements and also aims at pursuing the limb observations of temperature and key atmospheric constituents between 10 and 90 km when current satellite missions will probably come to an end. Line-of-sight winds are retrieved from the Doppler shift of molecular emission lines introduced by the wind field. Observations will be performed with two antennas pointing toward the limb in perpendicular directions in order to reconstruct the 2-D horizontal wind vector. Each antenna has a vertical field of view (FOV) of 5 km. The chosen spectral band, near 655 GHz, contains a dense group of strong O3 lines suitable for exploiting the small amount of wind information in stratospheric spectra. Using both sidebands of the heterodyne receiver, a large number of chemical species will be measured, including O3 isotopologues, H2O, HDO, HCl, ClO, N2O, HNO3, NO, NO2, HCN, CH3CN and HO2. This paper presents a simulation study that assesses measurement performance. The line-of-sight winds are retrieved between 30 and 90 km with the best sensitivity between 35 and 70 km, where the precision (1σ) is 5–10 m s−1 for a single scan. Similar performance can be obtained during day and night conditions except in the lower mesosphere, where the photo-dissociation of O3 in daytime reduces the sensitivity by 50 % near 70 km. Profiles of O3, H2O and temperature are retrieved with high precision up to 50 km ( 
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-25
    Description: Although the links between stratospheric dynamics, climate and weather have been demonstrated, direct observations of stratospheric winds are lacking, in particular at altitudes above 30 km. We report observations of winds between 8 and 0.01 hPa (~35–80 km) from October 2009 to April 2010 by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station. The altitude range covers the region between 35–60 km where previous space-borne wind instruments show a lack of sensitivity. Both zonal and meridional wind components were obtained, though not simultaneously, in the latitude range from 30° S to 55° N and with a single profile precision of 7–9 m s–1 between 8 and 0.6 hPa and better than 20 m s–1 at altitudes above. The vertical resolution is 5–7 km except in the upper part of the retrieval range (10 km at 0.01 hPa). In the region between 1–0.05 hPa, an absolute value of the mean difference 〈 2 m s–1 is found between SMILES profiles retrieved from different spectroscopic lines and instrumental settings. Good agreement (absolute value of the mean difference of ~2 m s–1) is also found with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis in most of the stratosphere except for the zonal winds over the equator (difference 〉 5 m s−1). In the mesosphere, SMILES and ECMWF zonal winds exhibit large differences (〉 20 m s–1), especially in the tropics. We illustrate our results by showing daily and monthly zonal wind variations, namely the semi-annual oscillation in the tropics and reversals of the flow direction between 50–55° N during sudden stratospheric warmings. The daily comparison with ECMWF winds reveals that in the beginning of February, a significantly stronger zonal westward flow is measured in the tropics at 2 hPa compared to the flow computed in the analysis (difference of ~20 m s–1). The results show that the comparison between SMILES and ECMWF winds is not only relevant for the quality assessment of the new SMILES winds, but it also provides insights on the quality of the ECMWF winds themselves. Although the instrument was not specifically designed for measuring winds, the results demonstrate that space-borne sub-mm wave radiometers have the potential to provide good quality data for improving the stratospheric winds in atmospheric models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-17
    Description: Although the links between stratospheric dynamics, climate and weather have been demonstrated, direct observations of stratospheric winds are lacking. We report observations of winds between 8 and 0.01 hPa (~35–80 km) from October 2009 to April 2010 by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station. The altitude range covers the region between 35–60 km where previous space-borne wind instruments show a lack of sensitivity. Both zonal and meridional wind components were obtained, though not simultaneously, in the latitude range from 30° S to 55° N and with a single profile precision of 7–9 m s−1 between 8 and 0.6 hPa and better than 20 m s−1 at altitudes above. The vertical resolution is 5–7 km except in the upper part of the retrieval range (10 km at 0.01 hPa). In the region between 1–0.05 hPa, a mean difference 20 m s−1), especially in the tropics. We illustrate our results by showing daily and monthly zonal wind variations, namely the semi-annual oscillation in the tropics and reversals of the flow direction between 50° N–55° N during sudden stratospheric warmings in the stratosphere. The daily comparison with ECMWF winds reveals that in the beginning of February, a significantly stronger zonal westward flow is measured in the tropics at 2 hPa compared to the flow computed in the analysis (difference of ~20 m s−1). The results show that the comparison between SMILES and ECMWF winds is not only relevant for the quality assessment of the new SMILES winds but it also provides insights on the quality of the ECMWF winds themselves. Although the instrument was not specifically designed for measuring winds, the results demonstrate that space-borne sub-mm wave radiometers have the potential to provide good quality data for improving the stratospheric winds in atmospheric models.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-15
    Description: Effects of a heavy rain event on radiocesium export were studied at stations on the Natsui River and the Same River in Fukushima Prefecture, Japan after Typhoon Roke during 21–22 September 2011, six months after the Fukushima Daiichi Nuclear Power Plant accident. Radioactivity of 134Cs and 137Cs in river waters was 0.011–0.098 Bq L−1 at normal flow conditions during July–September in 2011, but it increased to 0.85 Bq L−1 in high flow conditions by heavy rains occurring with the typhoon. The particulate fractions of 134Cs and 137Cs were 21–56% in the normal flow condition, but were close to 100% after the typhoon. These results indicate that the pulse input of radiocesium associated with suspended particles from land to coastal ocean occurred by the heavy rain event. Export flux of 134Cs and 137Cs by the heavy rain accounts for 30–50% of annual radiocesium flux in 2011. Results show that rain events are one factor controlling the transport and dispersion of radiocesium in river watersheds and coastal marine environments.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-06
    Description: Submillimeter-Wave Limb-Emission Sounder-2 (SMILES-2) is a satellite mission proposed in Japan to probe the middle and upper-atmosphere (20–160 km). The main instrument is composed of 4-K cooled radiometers operating near 0.7 and 2 THz. It could measure the diurnal changes of the horizontal wind above 30 km, temperature above 20 km, ground-state atomic oxygen above 90 km, atmospheric density near the mesopause, as well as abundance of about 15 chemical species. In this study we have conducted simulations to assess the wind, temperature and density retrieval performance in the mesosphere and lower thermosphere (60–110 km) using the radiometer at 760 GHz. It contains lines of water vapor (H2O), molecular oxygen (O2) and nitric oxide (NO) that are the strongest signals measured with SMILES-2 at these altitudes. The Zeeman effect on the O2 line due to the geomagnetic field (B) is considered, otherwise, the retrieval errors would be underestimated by a factor of 2 above 90 km. The optimal configuration for the radiometer’s polarization is found to be vertical linear. The line-of-sight wind is retrieved with a precision of 2–5 m/s up to 90 km (30 m/s at 110 km) and a vertical resolution of 2.5 km. Temperature and atmospheric density are retrieved with a precision better than 5 K (30 K) and 7 % (20 %) up to 90 km (110 km), respectively. Errors induced by uncertainties on the vector B are mitigated by retrieving it. The retrieval of B is described as a side-product of the mission. At high-latitudes, precisions of 30–100 nT on the vertical component and 100–300 nT on the horizontal one could be obtained at 85 and 105 km (vertical resolution of 20 km). SMILES-2 could therefore provide the first measurements of B close to the electrojets' altitude, and the precision is enough to measure variations induced by solar storms in the auroral regions.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-06-09
    Description: This paper describes the algorithms of the level-2 research (L2r) processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18–90 km. An theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles), temperature and O3 profiles. The line-of-sight tangent altitudes are retrieved between 20 and 50 km from the strong ozone (O3) line at 625.371 GHz, with low correlation with the O3 volume-mixing ratio and temperature retrieved profiles. Neglecting the non-linearity of the radiometric gain in the calibration procedure is the main systematic error. It is large for the retrieved temperature (between 5–10 K). Therefore, atmospheric pressure can not be derived from the retrieved temperature, and, then, in the altitude range where the line-of-sight tangent altitudes are retrieved, the retrieved trace gases profiles are found to be better represented on pressure levels than on altitude levels. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows. Future versions of the L2r algorithms will improve the temperature/pressure retrievals and also provide information in the upper tropospheric/lower stratospheric region (e.g., water vapor, ice content, O3) and on stratospheric and mesospheric line-of-sight winds.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-04
    Description: Stratospheric Inferred Winds (SIW) is a Swedish mini sub-millimeter limb sounder selected for the 2nd InnoSat platform launch planned near 2022. It is intended to fill the altitude gap between 30–70km in atmospheric wind measurements and also aims at pursuing the limb observations of temperature and key atmospheric constituents between 10–90km when current satellite missions are probably stopped. Line-of-sight winds are retrieved from the Doppler shift of the emission lines introduced by 5 the wind field. Observations will be performed with two antennas pointing toward the limb with perpendicular directions to reconstruct the 2-D horizontal wind vector. Each antenna has a vertical field of view of 5km. The chosen spectral band near 655GHz contains a dense group of strong O3 lines suitable for exploiting the small wind information in stratospheric spectra. Using both sidebands of the heterodyne receiver, a large number of chemical species will be measured including O3-isopotologues, H2O, HDO, HCl, ClO, N2O, HNO3, NO, NO2, HCN, CH3CN and HO2. This paper presents the simulation study for assessing the measurement performances. The line-of-sight winds are retrieved between 30–90km with the best sensitivity between 35–70km where the precision (1-sigma) is 5–10ms−1 for a single scan. Similar performances can be obtained during day and night conditions except in the lower mesosphere where the photo-dissociation of O3 in day-time reduces the sensitivity by 50% near 70km. Profiles of O3, H2O and temperature are retrieved with a high precision up to 50km (
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-20
    Description: Chlorine monoxide (ClO) is the key species for anthropogenic ozone losses in the middle atmosphere. We observed ClO diurnal variations using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station, which has a non-sun-synchronous orbit. This includes the first global observations of the ClO diurnal variation from the stratosphere up to the mesosphere. The observation of mesospheric ClO was possible due to 10–20 times better signal-to-noise (S/N) ratio of the spectra than those of past or ongoing microwave/submillimeter-wave limb-emission sounders. We performed a quantitative error analysis for the strato- and mesospheric ClO from the Level-2 research (L2r) product version 2.1.5 taking into account all possible contributions of errors, i.e. errors due to spectrum noise, smoothing, and uncertainties in radiative transfer model and instrument functions. The SMILES L2r v2.1.5 ClO data are useful over the range from 0.01 and 100 hPa with a total error estimate of 10–30 pptv (about 10%) with averaging 100 profiles. The SMILES ClO vertical resolution is 3–5 km and 5–8 km for the stratosphere and mesosphere, respectively. The SMILES observations reproduced the diurnal variation of stratospheric ClO, with peak values at midday, observed previously by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite (UARS/MLS). Mesospheric ClO demonstrated an opposite diurnal behavior, with nighttime values being larger than daytime values. A ClO enhancement of about 100 pptv was observed at 0.02 to 0.01 hPa (about 70–80 km) for 50° N–65° N from January–February 2010. The performance of SMILES ClO observations opens up new opportunities to investigate ClO up to the mesopause.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-02
    Description: At stations on the Natsui River and the Same River in Fukushima Prefecture, Japan, effects of a heavy rain event on radiocesium export were studied after Typhoon Roke during 21–22 September 2011, six months after the Fukushima Dai-ichi Nuclear Power Plant accident. Radioactivity of 134Cs and 137Cs in river waters was 0.009–0.098 Bq L−1 in normal flow conditions during July–September 2011, but it increased to 0.85 Bq L−1 in high flow conditions because of heavy rains occurring with the typhoon. The particulate fractions of 134Cs and 137Cs were 21–56% of total radiocesium in the normal flow condition, but were close to 100% after the typhoon. These results indicate that the pulse input of radiocesium associated with suspended particles from land to coastal ocean occurred because of the heavy rain event. Export flux of 134Cs and 137Cs attributable to the heavy rain accounts for 30–50% of the annual radiocesium flux from inland to coastal ocean region in 2011. Results show that rain events are one factor contributing to the transport and dispersion of radiocesium in river watersheds and coastal marine environments.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...