ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
Years
  • 1
    Call number: ZSP-168-600
    In: Berichte zur Polar- und Meeresforschung
    Description / Table of Contents: This report summarizes activities and field work results of the joint Russian-German expedition "Lena 2009". The 11th expedition to the Lena River Delta is part of the Russian-German science cooperation "System Laptev Sea" and continues the long-term investigations of permafrost and periglacial environmentsi n Arctic Siberia. [...] The expedition took place during the period June 24 to August 26, 2009 in different regions. The study areas comprise (i) the central Lena River Delta, with the Russian German station on Samoylov as base camp (ii) a north-south transect extending from the western part of the lower Lena River into the Lena Delta (realized by helicopter) and (iii) the eastern part of the delta (realized by riverboat).
    Type of Medium: 12
    Pages: Online-Ressource
    ISSN: 1866-3192
    Series Statement: Berichte zur Polar- und Meeresforschung 600
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI G5-20-93989
    Type of Medium: Dissertations
    Pages: viii, 139 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2018 , Table of Content I. Abstract II. Deutsche Zusammenfassung 0 Preface 1 Scientific Background 1.1 Paleoenvironmental changes since the gLGM in arid Central Asia and north-western High Asia 1.1.1 Paleoclimatic changes 1.1.2 Lake level fluctuations following climatic changes 1.1.3 Inferred terrestrial vegetation responses to environmental changes and possible human impact 1.2 The role of proxy records in tracing environmental changes 1.2.1 Archives and Proxies investigated in environmental studies in Central Asia 1.2.2 Limnological systems as environmental archives 1.2.3 The multiproxy approach as a tool to decipher environmental change 1.3 Study area 1.4 Material and Method Overview 1.4.1 Field based sampling 1.4.2 Outline of material and methods 1.5 Aim and objectives ofthis thesis 1.6 Thesis outline 1.7 Contribution of the authors 1.7.1 Manuscript I - published 1.7.2 Manuscript II - published 1.7.3 Manuscript III - published 1.7.4 Manuscript IV - in preparation 2 Manuscript I Climatic and limnological changes at Lake Karakul (Tajikistan) during the last ~29 cal ka 2.1 Abstract 2.2 Introduction 2.3 Study Area 2.4 Material and methods 2.4.1 Fieldwork 2.4.2 Laboratory analysis 2.5 Results 2.5.1 Age-depth relationship in core KK12-1 2.5.2 TIC, TOC, TOC/TN, δ18Ocarb and δ13CCarb 2.5.3 Grain-size distribution and results ofend-member modelling 2.5.4 XRF data 2.5.5 Ordination results of sediment parameters 2.6 Discussion 2.6.1 Paleoenvironmental indicators from sediment variables 2.6.2 Implications ofthe Lake Karakul sediment record 2.6.3 Linking lake internal development to climate change 2.7 Conclusions 2.8 Acknowledgements 2.9 Data availability 3 Manuscript II Aquatic macrophyte dynamics in Lake Karakul (Eastern Pamir) over the last 29 cal ka revealed by sedimentary ancient DNA and geochemical analyses of macrofossil remains 3.1 Abstract 3.2 Introduction 3.3 Material and Methods 3.3.1 Sample acquisition and treatment 3.3.2 Genetic approach 3.3.3 Elemental isotopic analyses ofaquatic macrophyte remains 3.4 Results 3.4.1 Macrophyte records along lake depth transects in Lake Karakul 3.4.2 Submerged plant content 3.4.3 Ancient DNA analyses 3.4.4 C, N, δ13C and δ15N of Stuckenia cf. pamirica remains 3.5 Discussion 3.5.1 Assessment of aDNA and chemical aquatic macrophyte data as proxies for the macrophyte composition and the paleo-productivity 3.5.2 Changes of past submerged plant composition and productivity and potential drivers 3.6 Conclusions 3.7 Acknowledgements 3.8 Data Availability 4 Manuscript III Radiocarbon and optical stimulated luminescence dating of sediments from Lake Karakul, Tajikistan 4.1 Abstract 4.2 Introduction 4.3 Regional setting 4.4 Methods 4.4.1 Collection and correlation of cores 4.4.2 Radiocarbon dating 4.4.3 Optically stimulated luminescence (OSL) dating 4.4.4 Establishment ofage-depth model 4.4.5 Investigation of exposed lake sediments 4.5 Results 4.6 Discussion 4.6.1 Recovered sediments and correlation ofcores from Lake Karakul 4.6.2 Age-depth model, and assessment of radiocarbon and OSL age data 4.6.3 Significance ofexposed sediments at section KK13-S1 4.6.4 Implications ofthe chronological data 4.7 Conclusion 4.8 Acknowledgements 5 Manuscript IV Vegetation change in the Eastern Pamir Mountains inferred from Lake Karakul pollen spectra of the last 28 ka 5.1 Abstract 5.2 Introduction 5.3 Study site 5.4 Material and Methods 5.4.1 Sediment cores and chronology 5.4.2 Pollen sample preparation and pollen analyses 5.4.3 Pollen data treatment 5.5 Results 5.5.1 Composite core (KK12-1/2; 27.6 cal ka BP to present) 5.5.2 Short core TAJ-Kar-08-lB 5.6 Discussion 5.6.1 Interpretation of pollen data 5.6.2 Terrestrial vegetation change in the Eastern Pamir Mountains in response to past climate change 5.7 Conclusions 5.8 Acknowledgements 5.9 Data Availability 6 Synthesis 6.1 Proxy evaluation 6.1.1 Age-depth relationship 6.1.2 Limnological proxies 6.1.3 Terrestrial proxies 6.2 The potential of Lake Karakul as archive for long term environmental change in the Eastern Pamir 6.3 Climate and moisture availability changes over time - inferred from sedimentary proxies 6.4 Assessment ofthe aquatic macrophyte composition and paleoproductivity within Lake Karakul 6.5 Inferred terrestrial vegetation changes as responds to climatic changes over the last 28 cal ka 6.6 Comparison inferred regional vegetation, lake internal and lake external variations and changes in climate reconstructed in other studies 6.6.1 Pre- gLGM and global Last Glacial Maximum (27.6 to 19 cal ka BP) 6.6.2 Late glacial 6.6.3 Early to middle Holocene 6.6.4 Middle to late Holocene 6.7 Outlook 7 Appendix 7.1 Supplementary information for Manuscript I 7.2 Supplementary information for Manuscript II 7.3 Supplementary information for Manuscript III 8 References Danksagung Eldesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI Bio-20-93993
    Type of Medium: Dissertations
    Pages: III, 127 Seiten , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2014 , Table of contents I - Abstract II - Zusammenfassung Chapter 1 - Introduction 1.1. Introduction 1.1.1 Motivation 1.1.2 Organisation of thesis 1.1 Scientific background 1.2.1 Arctic and wetland bryophytes 1.2.2 Bryophyte remains as palaeo-environmental indicators 1.2.3 Regional setting 1.3 Objectives ofthe thesis 1.4 Overview of the manuscripts 1.5 Contribution of the authors Chapter 2 - Manuscript #1 Abstract 2.1 Introduction 2.2 Geographic setting 2.3 Materials and methods 2.3.1 Fieldwork 2.3.2 Radiocarbon dating 2.3.3 Geochemical, stable carbon isotope, and granulometric analyses 2.3.4 Analyses of moss remains and vascular plant macrofossils 2.3.5 Pollen analysis 2.3.6 Diatom analysis 2.3.7 Statistical analysis 2.4 Results 2.4.1 High-resolution spatial characteristics oft the investigated polygon and vegetation pattern 2.4.2 Geochronology and age-depth relationships 2.4.3 General properties of the sedimentary fill 2.4.4 Bioindicators 2.4.5 Characterization oftwo different types of polygon pond sediment 2.5. Discussion 2.5.1 Small-scale spatial structure of polygons 2.5.2 Age-depth relationships 2.5.3 Proxy value of the analysed parameters 2.5.4 The general polygon development 2.5.5 Polygon development as a function of external controls and internal adjustment mechanisms 2.6 Conclusions Chapter 3 - Manuscript #11 Abstract 3.1 Introduction 3.2 Material und methods 3.2.1 Regional setting 3.2.3 Field methods and environmental data collection 3.2.4 Data analysis 3.3 Results 3.3.1 Major characteristics of the investigated polygons 3.3.2 Vegetation cover and its relationships with micro-relief and vegetation type 3.3.3 Vegetation alpha-diversity and its relationship with micro-relief and vegetation type 3.3.4 Vegetation composition and its relationship with micro-relief and vegetation type 3.4 Discussion 3.4.1 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the rim-pond transect (local-scale) 3.4.2 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the regional-scale forest-tundra transect 3.4.3 Indicator potential ofvascular plant and bryophyte remains from polygonal peats for the reconstruction of local hydrological and regional vegetation changes 3.4.4. Implications of the performed vegetation transect studies for future Arctic warming 3.5 Acknowledgements 2.4.4 Bioindicators 2.4.5 Characterization of two different types of polygon pond sediment 2.5. Discussion 2.5.1 Small-scale spatial structure of polygons 2.5.2 Age-depth relationships 2.5.3 Proxy value of the analysed parameters 2.5.4 The general polygon development 2.5.5 Polygon development as a function of external controls and internal adjustment mechanisms 2.6 Conclusions Chapter 3 - Manuscript #II Abstract 3.1 Introduction 3.2 Material und methods 3.2.1 Regional setting 3.2.3 Field methods and environmental data collection 3.2.4 Data analysis 3.3 Results 3.3.1 Major characteristics of the investigated polygons 3.3.2 Vegetation cover and its relationships with micro-relief and vegetation type 3.3.3 Vegetation alpha-diversity and its relationship with micro-relief and vegetation type 3.3.4 Vegetation composition and its relationship with micro-relief and vegetation type 3.4 Discussion 3.4.1 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the rim-pond transect (local-scale) 3.4.2 Patterns of cover, alpha-diversity and compositional turnover of vascular plants and bryophytes along the regional-scale forest-tundra transect 3.4.3 Indicator potential of vascular plant and bryophyte remains from polygonal peats for the reconstruction of local hydrological and regional vegetation changes 3.4.4. Implications of the performed vegetation transect studies for future Arctic warming 3.5 Acknowledgements Chapter 4 - Manuscript #3 Abstract 4.1 Introduction 4.2 Material and methods 4.2.1 Sites 4.2.2 Sampling 4.2.3 Investigated moss species 4.2.4 Measurements 4.2.5 Statistical Tests 4.3 Results 4.4 Discussion Chapter 5 - Discussion 5.1 Bryophytes of polygonal landscapes in Siberia 5.1.1 Modern bryophytes in the Siberian Arctic 5.1.2 Biochemical and isotopic characteristics of mosses 5.1.3 Reliability and potential of fossil bryophyte remains as palaeoproxies 5.2 Dynamics of low-centred polygons during the late Holocene 5.3 Outlook Appendix I - Preliminary Report Motivation Material and methods Results and first interpretation Appendix II Additional tables and figures of manuscript #1 Appendix III Additional figures of manuscript #2 Appendix IV - Quantitative approach of Standard Moss Stem (SMS3) Bibliography Acknowledgements Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI Bio-20-93988
    Type of Medium: Dissertations
    Pages: x, 181 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2017 , Contents Abstract Kurzfassung Contents 1. List of figures 2. List of tables Chapter 1. General introduction 1. Motivation 2. Scientific background 3. Objectives of the thesis 4. Thesis outline Chapter 2. Manuscript 1: Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix 1. Abstract 2. Introduction 3. Material and Methods 4. Results 5. Discussion 6. Acknowledgements Chapter 3. Manuscript 2: Field and simulation data reveal dissimilar responses of Larix gmelinii stands to increasing temperature across the Siberian treeline ecotone 1. Abstract 2. Introduction 3. Methods 4. Results 5. Discussion 6. Acknowledgements Chapter 4. Manuscript 3: High gene flow and complex treeline dynamics on the Taymyr Peninsula (north-central Siberia), revealed by nuclear microsatellites of Larix 1. Abstract 2. Introduction 3. Materials and methods 4. Results 5. Discussion 6. Acknowledgements Chapter 5. Manuscript 4: Dispersal distances at treeline in Siberia - genetic guided model improvement 1. Abstract 2. Introduction 3. Methods 4. Results 5. Discussion 6. Acknowledgements Chapter 6. Synopsis 1. Towards a better understanding of Siberian treeline dynamics 2. Methodological challenges to reconstruct and predict the treeline advance 3. Conclusions 4. Outlook Appendix 1. Supplementary information for manuscript 1 (Chapter 2) 2. Supplementary information for manuscript 2 (Chapter 3) 3. Supplementary information for manuscript 3 (Chapter 4) 4. Supplementary information for manuscript 4 (Chapter 5) Bibliography Acknowledgements - Danksagung Declaration
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI Bio-20-93994
    Type of Medium: Dissertations
    Pages: viii, 140 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2017 , Table of Contents I. Abstract II. Deutsche Zusammenfassung 0 Challenge 1 Introduction 1.1 The treeline ecotone 1.2 Stand structure drivers in the treeline ecotone 1.3 Climate change and recent treeline changes 1.4 Methods for treeline studies 1.4.1 Overview 1.4.2 Field-based treeline studies 1.4.3 Modelling treeline dynamics 1.5 Study Area 1.6 The Siberian treeline ecotone 1.7 Larix as study Species 1.8 Objectives of this thesis 1.9 Thesis outline 1.10 Contribution of the authors 1.10.1 Manuscript!- published 1.10.2 Manuscript II - submitted 1.10.3 Manuscript III-in preparation 1.10.4 Manuscript IV-submitted 2 Manuscript I Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Reference sites 2.3.2 Description of the model LAVESI 2.3.3 The ODD-Protocol for LAVESI 2.3.4 Parameterization 2.3.5 Khatanga climate time-series 2.3.6 Sensitivity analysis 2.3.7 Model experiments 2.4 Results 2.4.1 Sensitivity analysis 2.4.2 Taymyr treeline application 2.4.3 Temperature experiments 2.5 Discussion 2.5.1 Assessment of LAVESI sensitivity 2.5.2 Larix stand simulation under the Taymyr Peninsula weather 2.5.3 Transient Larix response to hypothetical future temperature changes 2.5.4 Conclusions 2.6 Acknowledgements 3 Manuscript II Dissimilar responses of larch stands in northern Siberia to increasing temperatures - a field and simulation based study 3.1 Abstract 3.2 Introduction 3.3 Methods 3.3.1 Study area 3.3.2 Field-based approach 3.3.3 Age analyses 3.3.4 Stand structure analyses 3.3.5 Seed analyses 3.3.6 Establishment history 3.3.7 Modelling approach 3.4 Results 3.4.1 Field data 3.4.2 Simulation study 3.5 Discussion 3.5.1 Data acquisition 3.5.2 Larch-stand patterns across the Siberian treeline ecotone 3.5.3 Warming causes densification in the forest-tundra 3.5.4 Intra-specific competition inhibits densification in the closed forest 3.5.5 Recruitment limitation decelerates densification and northward expansion ofthe single-tree tundra 3.6 Conclusions 3.7 Acknowledgements 4 Manuscript III Spatial patterns and growth sensitivity of larch stands in the Taimyr Depression 4.1 Abstract 4.2 Introduction 4.3 Methods 4.3.1 Study Area 4.3.2 Field data collection 4.3.3 Spatial point patterns 4.3.4 Dendrological approach 4.4 Results 4.4.1 Spatial patterns 4.4.2 Tree growth 4.5 Discussion 4.5.1 Spatial patterns 4.5.2 Tree chronology characteristics 4.6 Conclusion 5 Manuscript IV Patterns of larch stands under different disturbance regimes in the lower Kolyma River area (Russian Far East) 5.1 Abstract 5.2 Introduction 5.3 Methods 5.3.1 Study area and field data collection 5.3.2 Site description 5.3.3 Dendrochronological approach 5.3.4 Statistical analyses 5.4 Results 5.4.1 General stand characteristics and age structure 5.4.2 Spatial patterns 5.5 Discussion 5.5.1 Fire related disturbances 5.5.2 Water-related disturbances: lake drainage, flooding, polygon development 5.5.3 Implications and conclusion 6 Synthesis and Discussion 6.1 Assessment of applied methods 6.1.1 Field-based observations: 6.1.2 Modelling 6.2 Overview of larch stand structures and spatial pattern on different spatial scales 6.2.1 Recent stand structures 6.2.2 Spatial Patterns 6.3 Stand structure drivers and treeline changes 6.3.1 Climate change 6.3.2 Disturbances 6.3.3 Autecology 6.4 Conclusion 6.5 Outlook 7 Appendix 7.1 Supplementary information for Manuscript I 7.2 Supplementary information for Manuscript II 7.2.1 Manuscript II: Appendix 1. Climatic information for the study region 7.2.2 Manuscript II: Appendix 2. Plot-specific values and krummholz appearance 7.2.3 Manuscript II: Appendix 3. Regression analysis for age data 7.2.4 Manuscript II: Appendix 4. Model description 7.3 Supplementary information for Manuscript III 7.4 Supplementary information for Manuscript IV 7.5 Supplementary information 8 References Danksagung Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: AWI G5-22-94780
    Type of Medium: Dissertations
    Pages: xxi, 201 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2021 , Contents List of Figures List of Tables I Preamble 1 Introduction 1.1.1 The Journey from Weather to Climate 1.1.2 The Climate Background 1.1.3 Pollen as Quantitative Indicators of Past Changes 1.2 Overview and Aims of Manuscripts 1.2.1 List of Manuscripts 1.2.2 Short Summaries of the Manuscripts 1.3 Author Contributions to the Manuscripts II Manuscripts 2 Comparing estimation of techniques for temporal Scaling 2.1 Introduction 2.2 Data and Methods 2.2.1 Scaling estimation methods 2.2.2 Evaluation of the estimators 2.2.3 Data 2.3 Results 2.3.1 Effect of Regular and Irregular Sampling 2.3.2 Effect of Time series length 2.3.3 Application to database 2.4 Discussion 2.5 Conclusions 3 Land temperature variability driven by oceans at millennial timescales 4 Variability of surface climate in simulations of past and future 4.1 Introduction 4.2 Data and Method 4.2.1 Model simulations 4.2.2 The Last Glacial Maximum experiment 4.2.3 The mid Holocene experiment (midHolocene) 4.2.4 The warming experiments 1pctCO2 and abrupt4xCO2 4.2.5 Preprocessing of model simulations 4.2.6 Comparisons across the ensemble 4.2.7 Diagnosing variability changes 4.2.8 Changes in precipitation extremes 4.2.9 Timescale-dependence of the variability changes 4.3 Results 4.3.1 Hydrological sensitivity across the ensemble 4.3.2 Changes in local interannual variability 4.3.3 Changes in modes of variability 4.3.4 Circulation patterns underlying extratropical precipitation extremes 4.3.5 Changes in. the spectrum of variability 4.4 Discussion 4.4.1 Changes in climate variability with global mean temperature 4.4.2 Temperature vs. precipitation scaling 4.4.3 Comparison to climate reconstructions and observations 4.4.4 Limitations 4.5 Conclusions 5 Holocene vegetation variability in the Northern Hemisphere 5.1 Introduction 5.2 Data and Methods 5.2.1 Pollen Database 5.2.2 Principal Component Analysis 5.2.3 Timescale-dependent Estimates of Variability 5.2.4 Biome Classification 5.3 Results 5.3.1 General Vegetation Variability Analysis 5.3.2 Comparison of Forested and Open Land Vegetations 5.3.3 Comparison of Broadleaf and Needleleaf Fore ts 5.3.4 Comparison of Temperate and Boreal Coniferous Forests 5.3.5 Comparison of Evergreen and Deciduous Boreal Forests 5.4 Discussion 5.5 Conclusion III Postamble 6 General discussion and conclusion 6.1 Overview 6.2 Timescale-Dependent Estimates of Variability 6.3 Climate and Vegetation Variabilities in the Holocene 6.4 Implications for the 21th Century 6.5 Outlook IV Appendix A Supplementary figures from "Comparing estimation techniques for temporal scaling in paleo-climate timeseries" A.1 Block Average Results A.2 First-Order Correction for the Effect of Interpolation A.3 Change in Bias and Standard Deviation B Methods and supplementary information from "Land temperature variability driven by oceans at millennial timescales" B.1 Methods B.1.1 Reconstructions B.1.2 Significance Testing B.1.3 Testing for Anthropogenic Impacts B.1.4 Instrumental Data B.1.5 Model Data B.1.6 Spectral Estimates B.1.7 Variance Ratios B.1.8 Sub-Decadal Variability Binning B.1.9 Correlation B.1.10 Moran's I B.2 Supplementary Information B.2.1 Tree Ring Data Analysis B.2.2 Energy-Balance Equations B.3 Extended Data Figures C Supplementary figures from "Variability of surface climate in simulations of past and future" D Supplementary figures from "Characterization of holocene vegetation variability in the Northern Hemisphere" Bibliography
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI G3-22-94687
    Description / Table of Contents: Permafrost is warming globally, which leads to widespread permafrost thaw and impacts the surrounding landscapes, ecosystems and infrastructure. Especially ice-rich permafrost is vulnerable to rapid and abrupt thaw, resulting from the melting of excess ground ice. Local remote sensing studies have detected increasing rates of abrupt permafrost disturbances, such as thermokarst lake change and drainage, coastal erosion and RTS in the last two decades. All of which indicate an acceleration of permafrost degradation. In particular retrogressive thaw slumps (RTS) are abrupt disturbances that expand by up to several meters each year and impact local and regional topographic gradients, hydrological pathways, sediment and nutrient mobilisation into aquatic systems, and increased permafrost carbon mobilisation. The feedback between abrupt permafrost thaw and the carbon cycle is a crucial component of the Earth system and a relevant driver in global climate models. However, an assessment of RTS at high temporal resolution to determine the ...
    Type of Medium: Dissertations
    Pages: xxiv, 134 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2021 , Table of Contents Abstract Zusammenfassung List of Figures List of Tables Abbreviations 1 Introduction 1.1 Scientific background and motivation 1.1.1 Permafrost and climate change 1.1.2 Permafrost thaw and disturbances 1.1.3 Abrupt permafrost disturbances 1.1.4 Remote sensing 1.1.5 Remote sensing of permafrost disturbances 1.2 Aims and objectives 1.3 Study area 1.4 General data and methods 1.4.1 Landsat and Sentinel-2 1.4.2 Google Earth Engine 1.5 Thesis structure 1.6 Overview of publications and authors’ contribution 1.6.1 Chapter 2 - Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 1.6.2 Chapter 3 - Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 1.6.3 Chapter 4 - Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 2 Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Study Sites 2.3.2 Data 2.3.3 Data Processing 2.3.3.1 Filtering Image Collections 2.3.3.2 Creating L8, S2, and Site Masks 2.3.3.3 Preparing Sentinel-2 Surface Reflectance Images in SNAP 2.3.3.4 Applying Site Masks 2.3.4 Spectral Band Comparison and Adjustment 2.4 Results 2.4.1 Spectral Band Comparison 2.4.2 Spectral Band Adjustment 2.4.3 ES and HLS Spectral Band Adjustment 2.5 Discussion 2.6 Conclusions 2.7 Acknowledgements 2.8 Appendix Chapter 2 3 Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 3.1 Abstract 3.2 Introduction 3.3 Materials and Methods 3.3.1 Study Sites 3.3.2 Data 3.3.3 Data Processing and Mosaicking Workflow 3.3.4 Data Availability Assessment 3.3.5 Mosaic Coverage and Quality Assessment 3.4 Results 3.4.1 Data Availability Assessment 3.4.2 Mosaic Coverage and Quality Assessment 3.5 Discussion 3.6 Conclusions 4 Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 4.1 Abstract 4.2 Introduction 4.3 Study Area and Methods 4.3.1 Study area 4.3.2 General workflow and ground truth data 4.3.3 Data and LandTrendr 4.3.4 Index selection 4.3.5 Temporal Segmentation 4.3.6 Spectral Filtering 4.3.7 Spatial masking and filtering 4.3.8 Machine-learning object filter 4.4 Results 4.4.1 Focus sites 4.4.2 North Siberia 4.5 Discussion 4.5.1 Mapping of RTS 4.5.2 Spatio-temporal variability of RTS dynamics 4.5.3 LT-LS2 capabilities and limitations 4.6 Conclusion 4.7 Appendix 5 Synthesis and Discussion 5.1 Google Earth Engine 5.2 Landsat and Sentinel-2 5.3 Image mosaics and disturbance detection algorithm 5.4 Mapping RTS and their annual temporal dynamics 5.5 Limitations and technical considerations 5.6 Key findings 5.7 Outlook References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: AWI Bio-22-94840
    Description / Table of Contents: Vegetation change at high latitudes is one of the central issues nowadays with respect to ongoing climate changes and triggered potential feedback. At high latitude ecosystems, the expected changes include boreal treeline advance, compositional, phenological, physiological (plants), biomass (phytomass) and productivity changes. However, the rate and the extent of the changes under climate change are yet poorly understood and projections are necessary for effective adaptive strategies and forehanded minimisation of the possible negative feedbacks. The vegetation itself and environmental conditions, which are playing a great role in its development and distribution are diverse throughout the Subarctic to the Arctic. Among the least investigated areas is central Chukotka in North-Eastern Siberia, Russia. Chukotka has mountainous terrain and a wide variety of vegetation types on the gradient from treeless tundra to northern taiga forests. The treeline there in contrast to subarctic North America and north-western and central Siberia is represented by a deciduous conifer, Larix cajanderi Mayr. The vegetation varies from prostrate lichen Dryas octopetala L. tundra to open graminoid (hummock and non-hummock) tundra to tall Pinus pumila (Pall.) Regel shrublands to sparse and dense larch forests. Hence, this thesis presents investigations on recent compositional and above-ground biomass (AGB) changes, as well as potential future changes in AGB in central Chukotka. The aim is to assess how tundra-taiga vegetation develops under changing climate conditions particularly in Fareast Russia, central Chukotka. Therefore, three main research questions were considered: 1) What changes in vegetation composition have recently occurred in central Chukotka? 2) How have the above-ground biomass AGB rates and distribution changed in central Chukotka? 3) What are the spatial dynamics and rates of tree AGB change in the upcoming millennia in the northern tundra-taiga of central Chukotka? Remote sensing provides information on the spatial and temporal variability of vegetation. I used Landsat satellite data together with field data (foliage projective cover and AGB) from two expeditions in 2016 and 2018 to Chukotka to upscale vegetation types and AGB for the study area. More specifically, I used Landsat spectral indices (Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI) and Normalised Difference Snow Index (NDSI)) and constrained ordination (Redundancy analysis, RDA) for further k-means-based land-cover classification and general additive model (GAM)-based AGB maps for 2000/2001/2002 and 2016/2017. I also used Tandem-X DEM data for a topographical correction of the Landsat satellite data and to derive slope, aspect, and Topographical Wetness Index (TWI) data for forecasting AGB. Firstly, in 2016, taxa-specific projective cover data were collected during a Russian-German expedition. I processed the field data and coupled them with Landsat spectral Indices in the RDA model that was used for k-means classification. I could establish four meaningful land-cover classes: (1) larch closed-canopy forest, (2) forest tundra and shrub tundra, (3) graminoid tundra and (4) prostrate herb tundra and barren areas, and accordingly, I produced the land cover maps for 2000/2001/2002 and 2016/20017. Changes in land-cover classes between the beginning of the century (2000/2001/2002) and the present time (2016/2017) were estimated and interpreted as recent compositional changes in central Chukotka. The transition from graminoid tundra to forest tundra and shrub tundra was interpreted as shrubification and amounts to a 20% area increase in the tundra-taiga zone and 40% area increase in the northern taiga. Major contributors of shrubification are alder, dwarf birch and some species of the heather family. Land-cover change from the forest tundra and shrub tundra class to the larch closed-canopy forest class is interpreted as tree infilling and is notable in the northern taiga. We find almost no land-cover changes in the present treeless tundra. Secondly, total AGB state and change were investigated for the same areas. In addition to the total vegetation AGB, I provided estimations for the different taxa present at the field sites. As an outcome, AGB in the study region of central Chukotka ranged from 0 kg m-2 at barren areas to 16 kg m-2 in closed-canopy forests with the larch trees contributing the highest. A comparison of changes in AGB within the investigated period from 2000 to 2016 shows that the greatest changes (up to 1.25 kg m 2 yr 1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. Our estimations indicate a general increase in total AGB throughout the investigated tundra-taiga and northern taiga, whereas the tundra showed no evidence of change in AGB within the 15 years from 2002 to 2017. In the third manuscript, potential future AGB changes were estimated based on the results of simulations of the individual-based spatially explicit vegetation model LAVESI using different climate scenarios, depending on Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5 and RCP 8.5 with or without cooling after 2300 CE. LAVESI-based AGB was simulated for the current state until 3000 CE for the northern tundra-taiga study area for larch species because we expect the most notable changes to occur will be associated with forest expansion in the treeline ecotone. The spatial distribution and current state of tree AGB was validated against AGB field data, AGB extracted from Landsat satellite data and a high spatial resolution image with distinctive trees visible. The simulation results are indicating differences in tree AGB dynamics plot wise, depending on the distance to the current treeline. The simulated tree AGB dynamics are in concordance with fundamental ecological (emigrational and successional) processes: tree stand formation in simulated results starts with seed dispersion, tree stand establishment, tree stand densification and episodic thinning. Our results suggest mostly densification of existing tree stands in the study region within the current century in the study region and a lagged forest expansion (up to 39% of total area in the RCP 8.5) under all considered climate scenarios without cooling in different local areas depending on the closeness to the current treeline. In scenarios with cooling air temperature after 2300 CE, forests stopped expanding at 2300 CE (up to 10%, RCP 8.5) and then gradually retreated to their pre-21st century position. The average tree AGB rates of increase are the strongest in the first 300 years of the 21st century. The rates depend on the RCP scenario, where the highest are as expected under RCP 8.5. Overall, this interdisciplinary thesis shows a successful integration of field data, satellite data and modelling for tracking recent and predicting future vegetation changes in mountainous subarctic regions. The obtained results are unique for the focus area in central Chukotka and overall, for mountainous high latitude ecosystems.
    Type of Medium: Dissertations
    Pages: 149 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Potsdam, Universität Potsdam, 2022 , Contents Abstract Zusammenfassung Contents Abbreviations Motivation 1 Introduction 1.1 Scientific background 1.2 Study region 1.3 Aims and objectives 2 Materials and methods 3.1 Section 4 - Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017 3.2 Section 5 - Recent above-ground biomass changes in central Chukotka (NE Siberia) combining field-sampling and remote sensing 3.3 Section 6 - Future spatially explicit tree above-ground biomass trajectories revealed for a mountainous treeline ecotone using the individual-based model LAVESI 4 Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017 Abstract 1 Introduction 2 Materials and methods 2.1 Field data collection and processing 2.2 Landsat data, pre-processing and spectral indices processing 2.3 Redundancy analysis (RDA) and classification approaches 3 Results 3.1 General characteristics of the vegetation field data 3.2 Relating field data to Landsat spectral indices in the RDA model 3.3 Land-cover classification 3.4 Land-cover change between 2000 and 2017 4 Discussion 4.1 Dataset limitations and optimisation 4.2 Vegetation changes from 2000/2001/2002 to 2016/2017 Conclusions Acknowledgements Data availability statement References Appendix A. Detailed description of Landsat acquisitions Appendix B. MODIS NDVI time series from 2000 to 2018 Appendix C. Landsat Indices values for each analysed vegetation site Appendix D. Fuzzy c-means classification for interpretation of uncertainties for land-cover mapping Appendix E. Validation of land-cover maps Appendix F. K-means classification results Appendix G. Heterogeneity of natural landscapes and mixed pixels of satellite data Appendix H. Distribution of land-cover classes and their changes by study area 5 Recent above-ground biomass changes in central Chukotka (NE Siberia) combining field-sampling and remote sensing Abstract 1 Introduction 2 Materials and methods 2.1 Study region and field surveys 2.2 Above-ground biomass upscaling and change derivation 3 Results 3.1 Vegetation composition and above-ground biomass 3.2 Upscaling above-ground biomass using GAM 3.3 Change of above-ground biomass between 2000 and 2017 in the four focus areas 4 Discussion 4.1 Recent state of above-ground biomass at the field sites 4.2 Recent state of above-ground biomass upscaled for central Chukotka 4.3 Change in above-ground biomass within the investigated 15–16 years in central Chukotka 5 Conclusions Data availability statement Author contributions Competing interests Acknowledgements References Appendix A. Sampling and above-ground biomass (AGB) calculation protocol for field data 6 Future spatially explicit tree above-ground biomass trajectories revealed for a mountainous treeline ecotone using the individual-based model LAVESI Abstract 1 Introduction 2 Materials and methods 2.1 Study region 2.2 LAVESI model setup, parameterisation, and validation 2.2.4 LAVESI simulation setup for this study 2.2.5 Validation of the model’s performance 3 Results 3.1 Dynamics and spatial distribution changes of tree above-ground-biomass 3.2 Spatial and temporal validation of the contemporary larch AGB 4 Discussion 4.1 Future dynamics of tree AGB at a plot level 4.2 What are the future dynamics of tree AGB at the landscape level? 5 Conclusions Data availability Acknowledgements References Appendix B. Permutation tests for tree presence versus topographical parameters Appendix C. Landsat-based, field, and simulated estimations of larch above-ground biomass (AGB). 7 Synthesis 7.1 What changes in vegetation composition have happened from 2000 to 2017 in central Chukotka? 7.2 How have the above-ground biomass (AGB) distribution and rates changed from 2000 to 2017 in central Chukotka? 7.3 What are the spatial dynamics and rates of tree AGB change in the upcoming centuries in the northern tundra-taiga from 2020 to 3000 CE on the plot level and landscape level? References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: AWI Bio-23-95302
    Description / Table of Contents: Climate change of anthropogenic origin is affecting Earth’s biodiversity and therefore ecosystems and their services. High latitude ecosystems are even more impacted than the rest of Northern Hemisphere because of the amplified polar warming. Still, it is challenging to predict the dynamics of high latitude ecosystems because of complex interaction between abiotic and biotic components. As the past is the key to the future, the interpretation of past ecological changes to better understand ongoing processes is possible. In the Quaternary, the Pleistocene experienced several glacial and interglacial stages that affected past ecosystems. During the last Glacial, the Pleistocene steppe-tundra was covering most of unglaciated northern hemisphere and disappeared in parallel to the megafauna’s extinction at the transition to the Holocene (~11,700 years ago). The origin of the steppe-tundra decline is not well understood and knowledge on the mechanisms, which caused shifts in past communities and ecosystems, is of high priority as they are likely comparable to those affecting modern ecosystems. Lake or permafrost core sediments can be retrieved to investigate past biodiversity at transitions between glacial and interglacial stages. Siberia and Beringia were the origin of dispersal of the steppe-tundra, which make investigation this area of high priority. Until recently, macrofossils and pollen were the most common approaches. They are designed to reconstruct past composition changes but have limit and biases. Since the end of the 20th century, sedimentary ancient DNA (sedaDNA) can also be investigated. My main objectives were, by using sedaDNA approaches to provide scientific evidence of compositional and diversity changes in the Northern Hemisphere ecosystems at the transition between Quaternary glacial and interglacial stages. In this thesis, I provide snapshots of entire ancient ecosystems and describe compositional changes between Quaternary glacial and interglacial stages, and confirm the vegetation composition and the spatial and temporal boundaries of the Pleistocene steppe-tundra. I identify a general loss of plant diversity with extinction events happening in parallel of megafauna’ extinction. I demonstrate how loss of biotic resilience led to the collapse of a previously well-established system and discuss my results in regards to the ongoing climate change. With further work to constrain biases and limits, sedaDNA can be used in parallel or even replace the more established macrofossils and pollen approaches as my results support the robustness and potential of sedaDNA to answer new palaeoecological questions such as plant diversity changes, loss and provide snapshots of entire ancient biota.
    Description / Table of Contents: Der vom Menschen verursachte Klimawandel wirkt sich auf die biologische Vielfalt der Erde und damit auf die Ökosysteme und ihre Leistungen aus. Die Ökosysteme in den hohen Breitengraden sind aufgrund der verstärkten Erwärmung an den Polen noch stärker betroffen als der Rest der nördlichen Hemisphäre. Dennoch ist es schwierig, die Dynamik von Ökosystemen in den hohen Breitengraden vorherzusagen, da die Wechselwirkungen zwischen abiotischen und biotischen Komponenten sehr komplex sind. Da die Vergangenheit der Schlüssel zur Zukunft ist, ist die Interpretation vergangener ökologischer Veränderungen möglich, um laufende Prozesse besser zu verstehen. Im Quartär durchlief das Pleistozän mehrere glaziale und interglaziale Phasen, welche die Ökosysteme der Vergangenheit beeinflussten. Während des letzten Glazials bedeckte die pleistozäne Steppentundra den größten Teil der unvergletscherten nördlichen Hemisphäre und verschwand parallel zum Aussterben der Megafauna am Übergang zum Holozän (vor etwa 11 700 Jahren). Der Ursprung des Rückgangs der Steppentundra ist nicht gut erforscht, und die Kenntnis über die Mechanismen, die zu den Veränderungen in den vergangenen Lebensgemeinschaften und Ökosystemen geführt haben, ist von hoher Priorität, da sie wahrscheinlich mit denen vergleichbar sind, die sich auf moderne Ökosysteme auswirken. Durch die Entnahme von See- oder Permafrostkernsedimenten kann die vergangene Artenvielfalt an den Übergängen zwischen Eis- und Zwischeneiszeiten untersucht werden. Sibirien und Beringia waren der Ursprung der Ausbreitung der Steppentundra, weshalb die Untersuchung dieses Gebiets hohe Priorität hat. Bis vor kurzem waren Makrofossilien und Pollen die gängigsten Methoden. Sie dienen der Rekonstruktion vergangener Veränderungen in der Zusammensetzung der Bevölkerung, haben aber ihre Grenzen und Schwächen. Seit Ende des 20. Jahrhunderts kann auch sedimentäre alte DNA (sedaDNA) untersucht werden. Mein Hauptziel war es, durch den Einsatz von sedaDNA-Ansätzen wissenschaftliche Beweise für Veränderungen in der Zusammensetzung und Vielfalt der Ökosysteme der nördlichen Hemisphäre am Übergang zwischen den quartären Eiszeiten und Zwischeneiszeiten zu liefern. In dieser Arbeit liefere ich Momentaufnahmen ganzer alter Ökosysteme und beschreibe die Veränderungen in der Zusammensetzung zwischen Quartärglazialen und Interglazialen und bestätige die Vegetationszusammensetzung sowie die räumlichen und zeitlichen Grenzen der pleistozänen Steppentundra. Ich stelle einen allgemeinen Verlust der Pflanzenvielfalt fest, wobei das Aussterben der Pflanzen parallel zum Aussterben der Megafauna verlief. Ich zeige auf, wie der Verlust der biotischen Widerstandsfähigkeit zum Zusammenbruch eines zuvor gut etablierten Systems führte, und diskutiere meine Ergebnisse im Hinblick auf den laufenden Klimawandel. Mit weiteren Arbeiten zur Eingrenzung von Verzerrungen und Grenzen kann sedaDNA parallel zu den etablierteren Makrofossilien- und Pollenansätzen verwendet werden oder diese sogar ersetzen, da meine Ergebnisse die Robustheit und das Potenzial von sedaDNA zur Beantwortung neuer paläoökologischer Fragen wie Veränderungen der Pflanzenvielfalt und -verluste belegen und Momentaufnahmen ganzer alter Biota liefern.
    Type of Medium: Dissertations
    Pages: vi, 217 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2023 , TABLE OF CONTENTS Acknowledgements Summary Zusammenfassung 1 General introduction 1.1 A changing world 1.1.1 Global changes of anthropogenic origin 1.1.2 Amplified crisis in the high latitudes 1.2 The past is the key to the future 1.2.1 The Quaternary glacial and interglacial stages 1.2.2 The Beringia study case 1.3 Investigating past biodiversity 1.3.1 Traditional tools 1.3.2 Newest sedaDNA proxies 1.4 Motivation and aims of the thesis 1.5 Structure of the thesis 1.6 Author’s contributions 2 Manuscript I 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Geographical settings 2.3.2 Fieldwork and subsampling 2.3.3 Core splicing and dating 2.3.4 Sediment-geochemical analyses 2.3.5 Pollen analysis 2.3.6 Molecular genetic preparation 2.3.7 Processing of sedaDNA data 2.3.8 Statistical analysis and visualization 2.4 Results 2.4.1 Age model 2.4.2 Sediment-geochemical core composition 2.4.3 Pollen stratigraphy 2.4.4 sedaDNA composition 2.4.5 Comparison between pollen and sedaDNA 2.4.6 Taxa richness investigation 2.5 Discussion 2.5.1 Proxy validation 2.5.2 Vegetation compositional changes in response to climate inferred from pollen and sedaDNA records 2.5.3 The steppe-tundra of the Late Pleistocene 2.5.4 The disrupted Pleistocene-Holocene transition 2.5.5 The boreal forest of the Holocene 2.5.6 Changes in vegetation richness through the Pleistocene/Holocene transition inferred from the sedaDNA record 2.6 Conclusion Data availability statement Funding References 3 Manuscript II 3.1 Abstract 3.2 Introduction 3.3 Material and Method 3.3.1 Site description and timeframe 3.3.2 Sampling, DNA extraction and PCR 3.3.3 Filtering and cleaning dataset 3.3.4 Identification of taxa – species signal 3.3.5 Resampling 3.3.6 Assessment of the species pool stability 3.3.7 Quantification of extinct and extirpated taxa 3.3.8 Characterisation of species and candidate species 3.4 Results 3.4.1 Changes in the composition and species pool at the Pleistocene - Holocene transition 3.4.2 Decrease in the regional plant species richness between the Pleistocene and the Holocene 3.4.3 Identification of loss taxa events 3.4.4 Characterisation of lost taxa 3.5 Discussion 3.5.1 Biotic and abiotic changes in the ecosystem - a cocktail for extinction 3.5.2 Identification and quantification of potential plant taxa loss 3.5.3 Characterisation of potential taxa loss 3.5.4 Limits of the method 3.5.5 Conclusions and perspectives Funding References 4 Manuscript III 4.1 Abstract 4.2 Introduction 4.3 Material & Methods 4.3.1 Fieldwork and subsampling 4.3.2 Chronology 4.3.3 Pollen analysis 4.3.4 Isolation of sedimentary ancient DNA 4.3.5 Metabarcoding approach 4.3.6 Shotgun approach 4.3.7 Bioinformatic processing 4.4 Results 4.4.1 General results of the three approaches: pollen, metabarcoding and shotgun sequencing 4.4.2 Plants (Viridiplantae) 4.4.3 Fungi 4.4.4 Mammals (Mammalia) 4.4.5 Birds (Aves) 4.4.6 Insects (Insecta) 4.4.7 Prokaryotes (Bacteria, Archaea) and Viruses 4.5 Discussion 4.5.1 Interglacial communities 4.5.2 Glacial communities 4.5.3 Potential and limitations of the sedaDNA shotgun approach applied to ancient permafrost sediments 4.6 Conclusions Data availability statement Funding References 5 Synthesis 5.1 Ecological changes between glacial and interglacial stages 5.1.1 Changes in the compositional structure 5.1.2 Loss of plant diversity 5.1.3 Potential drivers of change 5.2 High potential of sedaDNA for past biodiversity reconstruction 5.3 Conclusions and future perspectives Bibliography Appendices Appendix 1: Supplementary material for Manuscript I Appendix 2: Supplementary material for Manuscript II Appendix 3: Supplementary material for Manuscript III Appendix 4: Manuscript IV Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: AWI Bio-20-93992
    Type of Medium: Dissertations
    Pages: XIII, 137 Seiten , Illustrationen, Diagramme , 1 CD-ROM
    Language: English
    Note: Dissertation, Universität Potsdam, 2017 , Content List of Abbreviations List of Figures List of Tables Summary Zusammenfassung Motivation Chapter 1 1. Scientific background 1.1 Late Quaternary climate changes and treeline transition in northern Siberia 1.2 Natural archives and proxies to assess vegetation history 1.3 Study area 1.3 Objectives of the thesis 1.4 Thesis outline 1.4.1 Chapters and manuscripts 1.4.2 Author's contribution 1.4.2.1 Manuscript I - published 1.4.2.2 Manuscript II - submitted 1.4.2.3 Manuscript III - prepared for submission Chapter 2 2. Manuscript I: Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia) 2.1 Abstract 2.2 Introduction 2.3 Geographical settings 2.4 Material and methods 2.4.1 Core material 2.4.2 Subsampling of the permafrost core 2.4.3 Molecular genetic laboratory work 2.4.4 Analysis of sequence data and taxonomic assignments 2.4.5 Pollen sample treatment and analysis 2.4.6 Statistical analyses and visualization 2.5 Results 2.5.1 SedaDNA 2.5.1.1 SedaDNA of terrestrial plants 2.5.1.2 SedaDNA of swamp and aquatic plants 2.5.1.3 SedaDNA of bryophytes and algae 2.5.2 Pollen 2.5.2.1 Pollen of terrestrial plants 2.5.2.2 Pollen and spores of swamp and aquatic plants 2.5.2.3 Spores and algae 2.5.3 Ratios of terrestrial to swamp and aquatic taxa and Poaceae to Cyperaceae 2.6 Discussion 2.6.1 Quality and proxy value of sedaDNA and pollen data 2.6.2 Environmental conditions during the pre-LGM (54-51 kyr BP, 18.9-8.35 m) and composition of deposited organic matter 2.6.3 Environmental conditions during the post-LGM (11.4-9.7 kyr BP (13.4-11.1 cal kyr BP)) and composition of deposited organic matter 2.7 Conclusions 2.8 Acknowledgements Chapter 3 3. Manuscript II: Genetic variation of larches at the Siberian tundra-taiga ecotone inferred from the assembly of chloroplast genomes and mitochondrial sequences 3.1. Abstract 3.2. Introduction 3.3. Material and methods 3.3.1 Plant material 3.3.2 DNA isolation and sequencing 3.3.3 Sequence processing and de novo assembly 3.3.4 Chloroplast genome assembly, annotation and variant detection 3.3.5 Mitochondrial sequences 3.3.6 Analyses of genetic variation 3.4 Results 3.4.1 Chloroplast genome structure and genetic variation 3.4.2 Mitochondrial sequences and genetic variation 3.5 Discussion 3.5.1 De novo assembly and genetic variation of chloroplast genomes and mitochondrial sequences 3.5.2 The distribution of genetic variation at the tundra-taiga ecotone 3.6 Conclusions 3.7 Acknowledgements Chapter 4 4. Manuscript III: The history of tree and shrub taxa and past genetic variation of larches on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the last interglacial uncovered by sedimentary ancient DNA 4.1 Abstract 4.2 Introduction 4.3 Materials and methods 4.3.1 Geographic setting 4.3.2 Core material 4.3.2.1 Core L14-02: Yedoma Ice Complex 4.3.2.2 Core L14-03: Thermo terrace 4.3.2.3 Core L14-04 and hand-pieces L14-04B and L14-04C: Thermo terrace including Eemian deposits 4.3.2.4 Core L14-05: Alas 4.3.3 Core sub-sampling 4.3.4 Molecular genetic laboratory work 4.3.4.1 Sedimentary ancient DNA metabarcoding approach 4.3.4.2 Specific amplification of Larix from sedimentary ancient DNA 4.3.5 Filtering of Illumina sequencing data and taxonomic assignments 4.3.6 Statistical analyses and visualization 4.3.7 Geochronology 4.4. Results 4.4.1 Overall composition of the DNA metabarcoding data 4.4.2 Terrestrial vegetation composition 4.4.2.1 Core L14-02: Late Pleistocene Yedoma Ice Complex 4.4.2.2 L14-03: Deeper late Pleistocene deposits 4.4.2.3 L14-04 Thermo terrace including Eemian deposits 4.4.2.4 Core L14-05: Alas with Holocene lake deposits and taberits of the Yedoma Ice Complex 4.4.2.5 The multivariate structure of the terrestrial vegetation among samples and cores 4.4.3 Genetic variation ofsediment-derived Larix sequences 4.5 Discussion 4.5.1 Tree taxa in the sedaDNA record - where do they come from? 4.5.2 Terrestrial plant community changes of warm phases since the last interglacial 4.5.3 Past genetic diversity of larch populations on Bol'shoy Lyakhovsky Island 4.6 Conclusion 4.7 Acknowledgements Chapter 5 5. Synopsis 5.1 The proxy potential of sedaDNA in paleobotanical reconstructions from sedimentary deposits 5.1.1 Combining sedaDNA and pollen to assess plant diversity and vegetation composition 5.1.2 Current limits and opportunities of sedaDNA approaches 5.2 Using genomic data to trace modern and past treeline dynamics 5.2.1 Modern genomic variation at the Siberian treeline 5.2.2 PCR-based markers for paleoenvironmental genetics 5.3 Terrestrial plant community changes and treeline dynamics in north-eastern Siberia since the last interglacial 5.3.1 Vegetation changes in north-eastern Siberia since the last interglacial 5.3.2 Implications for treeline dynamics 5.4 Conclusion 5.5 Outlook Appendix 1. Supplementary material for Manuscript I (Chapter 2) 2. Supplementary material for Manuscript II (Chapter 3) 3. Supplementary material for Manuscript III (Chapter 4) References Acknowledgements Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...