ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-01
    Description: Ages retrieved from accessory minerals in high-grade metamorphic rocks place important constraints on the timing of events and the rates of tectonometamorphic processes operating in the deep crust. In suprasolidus rocks, the dissolution and growth of zircon and monazite are strongly dependent on the P–T conditions of metamorphism and the chemistry and quantity of anatectic melt present. Along a clockwise P–T path, prograde heating above the solidus leads to episodic melt loss and changes in melt chemistry that have important implications for the dissolution and growth of zircon and monazite. In this study, phase equilibria modelling of open-system melting is coupled with experimental data on zircon and monazite solubility to evaluate the stability of these minerals at suprasolidus conditions along several schematic clockwise P–T paths. In migmatite melanosomes and residual granulites, some zircon is expected to survive heating to peak temperature and subsequent isothermal decompression, whereas monazite may be completely consumed, consistent with the observation that inherited cores are less common in monazite than in zircon. After decompression, during cooling to the solidus, new zircon and monazite growth from melt trapped along grain boundaries in melanosomes and residual granulites is expected to be limited. By contrast, leucosomes in migmatites and anatectic granites are predicted to contain mostly newly formed zircon and monazite with minimal inherited components, unless significant entrainment of these minerals from the source occurs. The preservation of cores inside newly formed zircon, as observed in many anatectic granites, demonstrates that segregation, ascent and emplacement is commonly fast enough to limit dissolution of these inherited grains.
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-16
    Description: Partial melting and melt drainage from deep suprasolidus crust in orogens has important consequences for tectonics. Melt extraction along prograde segments of clockwise P – T paths reduces fertility and increases the density and strength of residual crust, which has implications for further melt production during decompression. Using calculated P – T phase diagrams, implications of stepwise melt loss along clockwise P – T paths for pelite and greywacke are assessed, and density of the progressively more residual source and the potential role of buoyancy in the exhumation of deep crustal rocks are evaluated. Two model P – T paths are considered: isobaric heating at 1.2 GPa followed by decompression to 0.4 GPa at 750, 820 and 890 °C, and prograde heating from the fluid-present solidus at 1.2 GPa to 860 °C at 1.8 GPa followed by isothermal decompression to 0.4 GPa. Both closed-system (undrained) and conditionally open-system (drained by intermittent melt loss) conditions are assessed. If melt is drained along clockwise P – T paths in suprasolidus crust then lower quantities of melt will be generated during decompression than sometimes inferred in tectonic models. Instead, the role of melt transfer through suprasolidus crust and melt accumulation at shallow levels in the anatectic zone should be considered rather than simply invoking the generation of large volumes of melt in decompressing crust.
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...