ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈span〉〈div〉Abstract〈/div〉Deep-sea carbonate represents Earth’s largest carbon sink and one of the least-known components of the long-term carbon cycle that is intimately linked to climate. By coupling the deep-sea carbonate sedimentation history to a global tectonic model, we quantify this component within the framework of a continuously evolving seafloor. A long-term increase in marine carbonate carbon flux since the mid-Cretaceous is dominated by a post-50 Ma doubling of carbonate accumulation to ∼310 Mt C/yr at present-day. This increase was caused largely by the immense growth in deep-sea carbonate carbon storage, post-dating the end of the Early Eocene Climate Optimum. We suggest that a combination of a retreat of epicontinental seas, underpinned by long-term deepening of the seafloor, the inception of major Himalayan river systems, and the weathering of the Deccan Traps drove enhanced delivery of Ca〈sup〉2+〈/sup〉 and HCO〈sub〉3〈/sub〉〈sup〉–〈/sup〉 into the oceans and atmospheric CO〈sub〉2〈/sub〉 drawdown in the 15 m.y. prior to the onset of glaciation at ca. 35 Ma. Relatively stagnant mid-ocean ridge, rift- and subduction-related degassing during this period support our contention that continental silicate weathering, rather than a major decrease in CO〈sub〉2〈/sub〉 degassing, may have triggered an increase in marine carbonate accumulation and long-term Eocene global cooling. Our results provide new constraints for global carbon cycle models, and may improve our understanding of carbonate subduction-related metamorphism, mineralization and isotopic signatures of degassing.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈span〉Deep-sea carbonate represents Earth’s largest carbon sink and one of the least-known components of the long-term carbon cycle that is intimately linked to climate. By coupling the deep-sea carbonate sedimentation history to a global tectonic model, we quantify this component within the framework of a continuously evolving seafloor. A long-term increase in marine carbonate carbon flux since the mid-Cretaceous is dominated by a post-50 Ma doubling of carbonate accumulation to ~310 Mt C/yr at present-day. This increase was caused largely by the immense growth in deep-sea carbonate carbon storage, post-dating the end of the Early Eocene Climate Optimum. We suggest that a combination of a retreat of epicontinental seas, underpinned by long-term deepening of the seafloor, the inception of major Himalayan river systems, and the weathering of the Deccan Traps drove enhanced delivery of Ca〈sup〉2+〈/sup〉 and HCO〈sub〉3〈/sub〉〈sup〉–〈/sup〉 into the oceans and atmospheric CO〈sub〉2〈/sub〉 drawdown in the 15 m.y. prior to the onset of glaciation at ca. 35 Ma. Relatively stagnant mid-ocean ridge, rift- and subduction-related degassing during this period support our contention that continental silicate weathering, rather than a major decrease in CO〈sub〉2〈/sub〉 degassing, may have triggered an increase in marine carbonate accumulation and long-term Eocene global cooling. Our results provide new constraints for global carbon cycle models, and may improve our understanding of carbonate subduction-related metamorphism, mineralization and isotopic signatures of degassing.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-01
    Description: Australia is distinctive because it experienced first-order, broad-scale vertical motions during the Cenozoic. Here, we use plate-tectonic reconstructions and a model of mantle convection to quantitatively link the large-scale flooding history of the continent to mantle convection since 50 Ma. Subduction-driven geodynamic models show that Australia undergoes a 200 m northeast downward tilt as it approaches and overrides subducted slabs between Melanesia and the proto–Tonga-Kermadec subduction systems. However, the model only produces the observed continentwide subsidence, with 300 m of northeast downward tilt since the Eocene, if we assume that Australia has moved northward away from a relatively hot mantle anomaly. The models suggest that Australia's paleoshoreline evolution can only be reproduced if the continent moved northward, away from a large buoyant anomaly. This results in continentwide subsidence of ∼200 m. The additional progressive, continentwide tilting down to the northeast can be attributed to the horizontal motion of the continent toward subducted slabs sinking below Melanesia.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-01
    Description: Travouillon et al. (2012) challenge our interpretation of proxy records (Herold et al., 2011), citing five points for rainforest at Riversleigh and across northern and central Australia in the early to middle Miocene; points that we refute here. (1) Cenogram/body mass distribution patterns Travouillon et al. (2009) were equivocal in assigning some fauna sites to open forest or rainforest using cenograms alone, but using cenograms and body mass distribution (BMD) in combination, they interpreted the majority of the Riversleigh sites as rainforest. Yet, their Discriminant Function Analysis (DFA) of the same faunas identified a mix of open forest (2/6) and rainforest sites (4/6) for the early Miocene, and all five middle Miocene sites as open forest. Thus their own data imply a mosaic of habitats in space and time in the Riversleigh area of northern Australia.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...