ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 7319-7330 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The gas phase infrared spectra of the hydrated hydronium cluster ions H3O+⋅(H2O)n(n=1, 2, 3) have been observed from 3550 to 3800 cm−1. The new spectroscopic method developed for this study is a two color laser scheme consisting of a tunable cw infrared laser with 0.5 cm−1 resolution used to excite the O–H stretching vibrations and a cw CO2 laser that dissociates the vibrationally excited cluster ion through a multiphoton process. The apparatus is a tandem mass spectrometer with a radio frequency ion trap that utilizes the following scheme: the cluster ion to be studied is first mass selected; spectroscopic interrogation then occurs in the radio frequency ion trap; finally, a fragment ion is selected and detected using ion counting techniques. The vibrational spectra obtained in this manner are compared with that taken previously using a weakly bound H2 "messenger.'' A spectrum of H7 O+3 taken using a neon messenger is also presented. Ab initio structure and frequency predictions by Remington and Schaefer are compared with the experimental results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 85 (1986), S. 2328-2329 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Infrared spectra of hydrated hydronium ions weakly bound to an H2 molecule, specifically H7O+3 ⋅H2 and H9O+4 ⋅H2, have been observed. Mass-selected parent ions, trapped in a radio frequency ion trap, are excited by a tunable infrared laser; following absorption, the complex predissociates with loss of the H2, and the resulting fragment ions are detected. Spectra have been taken from 3000 to 4000 cm−1, with a resolution of 1.2 cm−1. They are compared to recent theoretical and experimental spectra of the hydronium ion hydrates alone. Binding an H2 molecule to these clusters should only weakly perturb their vibrations; if so, our spectra should be similar to spectra of the hydrated hydronium ions H7O+3 and H9O+4.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 27-33 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electron excitation temperatures have been measured in a low-pressure (0.05-Torr Cs, 2-Torr total pressure) argon-cesium discharge that uses a heated cathode (900–1100 K). The excitation temperature determinations are based upon a model that allows calculation of cesium excited state densities for low electron density (〈1011 cm−3). The model assumes that the dominant creation processes for excited states are electron impact excitation from the ground state and radiative cascade from higher levels, while destruction is by spontaneous emission. Maxwellian electron energy distributions were used and the plasmas were considered to be optically thin. The model indicates that cascade contributions to the production of excited states can be as high as 50% for some cesium levels. Predicted emission spectra with cascade contributions to spontaneous emission intensities agree well with measured spectra except for radiation trapped transitions from low nP states to the ground state. Excitation temperatures are determined by fitting measured and calculated spectra.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-02
    Description: Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of 2010 impervious cover and water withdrawal on river flow across the Conterminous US at the 8-digit Hydrologic Unit Code (HUC) watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "low" and A2 "high" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2010 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modelling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-21
    Description: Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC) watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic demand for water, relocation of agricultural production, and/or water conservation measures. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modeling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...