ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A number of chemically modified hemoglobin preparations have been proposed for use as an emergency resuscitation fluid. The purpose for forming these hemoglobin derivatives is to decrease the oxygen binding (i.e., to increase the P50) and to increase the intravascular retention time. These goals have been met with various degrees of success by using the reaction with pyridoxyl 5-phosphate to raise the P50, followed by the addition of glutaraldehyde to increase circulating half-life by polymerization.1,2 Other derivatives have been formed with polyethylene glycol,3,4 bis-(3,5-dibromosalicyl) fumarate,5,6 glycolaldehyde,7 and 2-nor-2-formylpyridoxal 5-phosphate,8,9 as well as with other compounds. All these derivatives introduce a foreign molecule into the hemoglobin, which may not always be desirable. Recently Tharp and Day10 used cyanogen to form intersubunit amide cross-links in hemoglobin without the incorporation of cyanogen. This approach is attractive if the appropriate functional properties can be attained. Takeda et al.11 showed that equimolar concentrations of amino acids and disuccinimidyloxalate could form peptide bonds in high yield. We report the characteristics of the hemoglobin molecule modified by internal covalent amide bonds, which may be a suitable candidate for a resuscitation fluid.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Pyridoxylated adult human hemoglobin (HbAo) was prepared using a one molar equivalent of pyridoxal 5-phosphate (PLP) per heme and reduced with either NaCNBH3 or NaBH4. A separate sample was pyridoxylated and passed through a mixed-bed ion exchange column without reduction. All three preparations had a P50 of 29 ± 2 torr and a cooperativity of n = 2.4 ± 0.1. These preparations, in both the oxy and deoxy forms, were then treated with 7 equivalents of glutaraldehyde per tetramer at pH 6.8 at 4°C and at room temperature. The polymerization invariably reduced the P50 to 18 ± 2 torr with Hill coefficients of less than 2. These solutions, with or without further reduction using NaCNBH3, all retained the PLP in differing amounts (2-3 moles/tetramer). Methemoglobin concentrations were increased during the polymerization reaction. The normal pyridoxylation procedure, using sodium borohydride reduction, resulted in a number of different molecular species. Polymerization with glutaraldehyde caused a further proliferation of molecular species that could not be separated by anion exchange chromatography or by isoelectric focusing. The extent of polymerization, estimated by gel exclusion chromatography and SDS polyacrylamide gel electrophoresis, was from 40 to 50%. Analysis of the reverse phase chromatograms, which separate the heme and the α- and β-chains, showed extensive polymerization and distribution of the radioactively labeled PLP on the protein for all preparations. All of the polymerized and pyridoxylated samples were unstable, and showed different chromatographic patterns after storage at 4°C for 1 month. Attempts to stabilize these preparations by further reduction with NaCNBH3 gave products with a lower P50 and lower cooperativity. When the reactions were conducted with a purified HbAo, heterogeneity was somewhat decreased compared to the normally used stroma-free hemoglobin, but a large number of molecular species were still formed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-12
    Description: Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus , the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis , and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia , Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia , although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-08
    Description: The requirement of vitamins for core metabolic processes creates a unique set of pressures for arthropods subsisting on nutrient-limited diets. While endosymbiotic bacteria carried by arthropods have been widely implicated in vitamin provisioning, the underlying molecular mechanisms are not well understood. To address this issue, standardized predictive assessment of vitamin metabolism was performed in 50 endosymbionts of insects and arachnids. The results predicted that arthropod endosymbionts overall have little capacity for complete de novo biosynthesis of conventional or active vitamin forms. Partial biosynthesis pathways were commonly predicted, suggesting a substantial role in vitamin provisioning. Neither taxonomic relationships between host and symbiont, nor the mode of host-symbiont interaction were clear predictors of endosymbiont vitamin pathway capacity. Endosymbiont genome size and the synthetic capacity of nonsymbiont taxonomic relatives were more reliable predictors. We developed a new software application that also predicted that last-step conversion of intermediates into active vitamin forms may contribute further to vitamin biosynthesis by endosymbionts. Most instances of predicted vitamin conversion were paralleled by predictions of vitamin use. This is consistent with achievement of provisioning in some cases through upregulation of pathways that were retained for endosymbiont benefit. The predicted absence of other enzyme classes further suggests a baseline of vitamin requirement by the majority of endosymbionts, as well as some instances of putative mutualism. Adaptation of this workflow to analysis of other organisms and metabolic pathways will provide new routes for considering the molecular basis for symbiosis on a comprehensive scale.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...