ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-17
    Description: This study focuses on evaluating the potential of ALOS/PALSAR time-series data to analyze the activation of deep-seated landslides in the foothill zone of the high mountain Alai range in the southern Tien Shan (Kyrgyzstan). Most previous field-based landslide investigations have revealed that many landslides have indicators for ongoing slow movements in the form of migrating and newly developing cracks. L-band ALOS/PALSAR data for the period between 2007 and 2010 are available for the 484 km2 area in this study. We analyzed these data using the Small Baseline Subset (SBAS) time-series technique to assess the surface deformation related to the activation of landslides. We observed up to ±17 mm/year of LOS velocity deformation rates, which were projected along the local steepest slope and resulted in velocity rates of up to −63 mm/year. The obtained rates indicate very slow movement of the deep-seated landslides during the observation time. We also compared these movements with precipitation and earthquake records. The results suggest that the deformation peaks correlate with rainfall in the 3 preceding months and with an earthquake event. Overall, the results of this study indicated the great potential of L-band InSAR time series analysis for efficient spatiotemporal identification and monitoring of slope activations in this region of high landslide activity in Southern Kyrgyzstan.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-21
    Description: The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME)—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-15
    Description: Mountain chains of Central Asia host a large number of glaciated areas that provide critical water supplies to the semi-arid populated foothills and lowlands of this region. Spatio-temporal variations of glacier flows are a key indicator of the impact of climate change on water resources as the glaciers react sensitively to climate. Satellite remote sensing using optical imagery is an efficient method for studying ice-velocity fields on mountain glaciers. In this study, temporal and spatial changes in surface velocity associated with the Inylchek glacier in Kyrgyzstan are investigated. We present a detailed map for the kinematics of the Inylchek glacier obtained by cross-correlation analysis of Landsat images, acquired between 2000 and 2011, and a set of ASTER images covering the time period between 2001 and 2007. Our results indicate a high-velocity region in the elevated part of the glacier, moving up to a rate of about 0.5 m/day. Time series analysis of optical data reveals some annual variations in the mean surface velocity of the Inylchek during 2000–2011. In particular, our findings suggest an opposite trend between periods of the northward glacial flow in Proletarskyi and Zvezdochka glacier, and the rate of westward motion observed for the main stream of the Inylchek.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-27
    Description: We use 124 scenes of TerraSAR–X data that were acquired in 2009 and 2010 to analyse the spatial and temporal variability in surface kinematics of the debris-covered Inylchek Glacier, located in the Tien Shan mountain range in Central Asia. By applying the feature tracking method to the intensity information of the radar data and combining the results from the ascending and descending orbits, we derive the surface velocity field of the glaciated area. Analysing the seasonal variations over the upper part of the Southern Inylchek branch, we find a temperature-related increase in velocity from 25 cm/d up to 50 cm/d between spring and summer, with the peak occurring in June. Another prominent velocity peak is observable one month later in the lower part of the Southern Inylchek branch. This area shows generally little motion, with values of approximately 5–10 cm/d over the year, but yields surface kinematics of up to 25 cm/d during the peak period. Comparisons of the dates of annual glacial lake outburst floods (GLOFs) of the proglacial Lake Merzbacher suggest that this lower part is directly influenced by the drainage, leading to the observed mini-surge, which has over twice the normal displacement rate. With regard to the GLOF and the related response of Inylchek Glacier, we conclude that X–band radar systems such as TerraSAR–X have a high potential for detecting and characterising small-scale glacial surface kinematic variations and should be considered for future inter-annual glacial monitoring tasks.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-02
    Description: Forests, Vol. 9, Pages 538: Recent Health and Safety Incident Trends Related to the Storage of Woody Biomass: A Need for Improved Monitoring Strategies Forests doi: 10.3390/f9090538 Authors: Sally Krigstin Suzanne Wetzel Nivatha Jayabala Christopher Helmeste Sebnem Madrali Joy Agnew Sylvain Volpe Self-heating fires, dust explosions and off-gassing during biomass storage are serious hazards which can have devastating consequences, resulting in worker fatalities and health impacts, as well as bioenergy plant destruction and complete loss of production. A compilation of incident reports involving biomass storage from 2000–2018 has revealed that these potential hazards continue to be a major concern in the bioenergy sector. Higher occurrence rates were found for incidents categorized as self-heating fires and fires of uncertain causes in recent years through our study of online reports. This paper highlights a critical need for improved safety protocols for bioenergy plant workers, detailed incident documentation and enhanced biomass monitoring strategies to drastically reduce the occurrence of threats associated with the storage of woody biomass. In order to manage the high risks associated with self-heating, a system for real-time monitoring of internal pile temperature was investigated. A monitoring system supplied by Braingrid Corporation was verified using embedded Tinytag thermologgers indicating that this methodology shows potential for preventing spontaneous combustion events by providing real time temperature data for superior pile management.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-24
    Description: Forests, Vol. 8, Pages 305: Can Biomass Quality Be Preserved through Tarping Comminuted Roadside Biomass Piles? Forests doi: 10.3390/f8090305 Authors: Suzanne Wetzel Sylvain Volpe Janet Damianopoulos Sally Krigstin Storage conditions play a vital role in maintaining biomass quality as a suitable bioenergy feedstock. Research has shown that biomass undergoes significant changes under different storage conditions and that these may influence its suitability for various biorefining and bioenergy opportunities. This study explores the effects of different tarp covers on the properties of stored-comminuted forest harvest residue from the Great Lakes St. Lawrence Forest. Characteristics of the biomass were evaluated upon harvesting and after one year in storage. The physical state of the different tarps used for pile coverage was monitored onsite. Results indicated that tarp material considerably affects micro-climatic conditions inside piles, yielding variation in the characteristics of stored biomass over the storage period. While plastic based tarps were easier to work with and lasted longer than paper-based tarps, the paper-based tarps were more breathable and resulted in less degradation of biomass. However, the paper-based tarps did not maintain their structural integrity for the full duration of the storage period. Moisture content of original biomass (48.99%) increased to a maximum of 65.25% under plastic cover after 1 year of storage. This negatively influenced the net heating value of the biomass, causing it to decrease from 8.58 MJ/kg to 4.06 MJ/kg. Overall, the use of covers was not considered successful in preserving the original quality of biomass but may enhance its quality for other biorefinery opportunities.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-02
    Description: Materials, Vol. 11, Pages 542: Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations Materials doi: 10.3390/ma11040542 Authors: Maria Wetzel Thomas Kempka Michael Kühn The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-21
    Description: As geothermal energy is of increasing importance as a renewable energy source, there is a high demand for comprehensive studies to prevent failure during implementation, as is the case in Staufen im Breisgau, Germany. The drilling of seven wells for the geothermal heating of the city hall in 2007 is thought to have disturbed the existing hydro-geological system in the complex structured transition zone of the Upper Rhine Graben and the Schwarzwald massif. This event has led to uplift, related to the transformation of anhydrite to gypsum, which affects the infrastructure of the city centre via the generation of large cracks. This study focuses on the application of the InSAR Small Baseline Subset (SBAS) approach using 50 X-band radar images from the German TerraSAR-X satellite (TSX) to map the spatial and temporal patterns of the deformation field in detail. X-band InSAR time series analysis for the three-year time period from July 2008 through May 2011 indicates maximum velocities of ~12 cm/yr in the line of sight (LOS) direction, from the ground to the satellite, approximately 50 m northeast of the drilling field. In comparison with leveling data for the same time period, TSX data analysis better delineates the border of the deformation area, and it is able to map the amount of deformation associated with different parts of the city. Moreover, this comparison indicates contributions of horizontal motion, as is expected for uplift patterns.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-02-20
    Description: Remote Sensing, Vol. 10, Pages 315: Performance Assessment of Balloon-Borne Trace Gas Sounding with the Terahertz Channel of TELIS Remote Sensing doi: 10.3390/rs10020315 Authors: Jian Xu Franz Schreier Gerald Wetzel Arno de Lange Manfred Birk Thomas Trautmann Adrian Doicu Georg Wagner Short-term variations in the atmospheric environment over polar regions are attracting increasing attention with respect to the reliable analysis of ozone loss. Balloon-borne remote sensing instruments with good vertical resolution and flexible sampling density can act as a prototype to overcome the potential technical challenges in the design of new spaceborne atmospheric sensors and represent a valuable tool for validating spaceborne observations. A multi-channel cryogenic heterodyne spectrometer known as the TErahertz and submillimeter LImb Sounder (TELIS) has been developed. It allows limb sounding of the upper troposphere and stratosphere (10–40 km ) within the far infrared (FIR) and submillimeter spectral regimes. This paper describes and assesses the performance of the profile retrieval scheme for TELIS with a focus on the ozone ( O 3 ), hydrogen chloride ( HCl ), carbon monoxide ( CO ), and hydroxyl radical ( OH ) measured during three northern polar campaigns in 2009, 2010, and 2011, respectively. The corresponding inversion diagnostics reveal that some forward/instrument model parameters play important roles in the total retrieval error. The accuracy of the radiometric calibration and the spectroscopic knowledge has a significant impact on retrieval at higher altitudes, whereas the pointing accuracy dominates the total error at lower altitudes. The TELIS retrievals achieve a vertical resolution of ∼ 2–3 km through most of the stratosphere below the balloon height. Dominant water vapor ( H 2 O ) contamination and low abundances of the target species reduce the retrieval sensitivity at the lowermost altitudes measured by TELIS. An extensive comparison shows that the TELIS profiles are consistent with profiles obtained by other limb sounders. The comparison appears to be very promising, except for discrepancies in the upper troposphere due to numerical regularization. This study not only consolidates the validity of balloon-borne TELIS FIR measurements, but also demonstrates the scientific relevance and technical feasibility of terahertz limb sounding of the stratosphere.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-09-13
    Description: Water, Vol. 10, Pages 1226: Engineering Analysis of Plant and Fungal Contributions to Bioretention Performance Water doi: 10.3390/w10091226 Authors: Alex Taylor Jill Wetzel Emma Mudrock Kennith King James Cameron Jay Davis Jenifer McIntyre While the use of bioretention for stormwater management is widespread, data about the impacts of plants and microorganisms on long-term treatment efficacy remain region-specific. To help address this knowledge gap for the Pacific Northwest region of the United States, we installed twelve under-drained bioretention mesocosms built to Washington State Department of Ecology stormwater management standards in an urban watershed in Seattle, WA that included a busy portion of Interstate 5. Six mesocosms were planted with Pacific ninebark (Physocarpus capitatus) and six were inoculated with the wine cap mushroom (Stropharia rugoso-annulata) resulting in four replicated factorial treatments. Because region-specific studies must be mindful of the prevailing regulatory framework, all mesocosms used the Washington State Department of Ecology design standard soil: a blend of 60% sand and 40% compost by volume, despite the known leaching problems with high compost volume fraction soils. Five water quality sampling events over 15 months of continuous stormwater loading were analyzed for dozens of water quality parameters. Multiple linear regression analyses of treatment differences over the 400-day loading period illustrate that incorporating fungi into the wood mulch slowed the release of total and ortho-phosphorus from the bioretention soil; however net export of phosphorus from this compost rich media continued through 400 days of loading for all treatments. Multivariate ordination methods illustrate that time and temperature dramatically affect performance of this media, but the impact of planting and fungal inoculation had marginal detectible effects on overall water quality during the study timeframe. These results demonstrate that future studies of this media blend must plan for at least one year of nutrient and metal leaching before the time-dependent heterogenous variance introduced by these exports will no longer pose an obstacle to analysis of other performance changing factors. The results highlight important physical and chemical considerations for this media blend, and the opportunity for continued research on the use of fungal inoculated mulch application as a new ecological engineering tool for reducing phosphorus leaching from soils.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...