ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-11
    Description: Organic aerosol (OA) is one of the main components of the global particulate burden and intimately links natural and anthropogenic emissions with air quality and climate. It is challenging to accurately represent OA in global models. Direct quantification of global OA abundance is not possible with current remote sensing technology; however, it may be possible to exploit correlations of OA with remotely observable quantities to infer OA spatiotemporal distributions. In particular, formaldehyde (HCHO) and OA share common sources via both primary emissions and secondary production from oxidation of volatile organic compounds (VOCs). Here, we examine OAHCHO correlations using data from summertime airborne campaigns investigating biogenic (NASA SEAC4RS and DC3), biomass burning (NASA SEAC4RS), and anthropogenic conditions (NOAA CalNex and NASA KORUS-AQ). In situ OA correlates well with HCHO (r=0.590.97), and the slope and intercept of this relationship depend on the chemical regime. For biogenic and anthropogenic regions, the OAHCHO slopes are higher in low NOx conditions, because HCHO yields are lower and aerosol yields are likely higher. The OAHCHO slope of wildfires is over 9 times higher than that for biogenic and anthropogenic sources. The OAHCHO slope is higher for highly polluted anthropogenic sources (e.g., KORUS-AQ) than less polluted (e.g., CalNex) anthropogenic sources. Near-surface OAs over the continental US are estimated by combining the observed in situ relationships with HCHO column retrievals from NASA's Ozone Monitoring Instrument (OMI). HCHO vertical profiles used in OA estimates are from climatology a priori profiles in the OMI HCHO retrieval or output of specific period from a newer version of GEOS-Chem. Our OA estimates compare well with US EPA IMPROVE data obtained over summer months (e.g., slope =0.600.62, r=0.56 for August 2013), with correlation performance comparable to intensively validated GEOS-Chem (e.g., slope =0.57, r=0.56) with IMPROVE OA and superior to the satellite-derived total aerosol extinction (r=0.41) with IMPROVE OA. This indicates that OA estimates are not very sensitive to these HCHO vertical profiles and that a priori profiles from OMI HCHO retrieval have a similar performance to that of the newer model version in estimating OA. Improving the detection limit of satellite HCHO and expanding in situ airborne HCHO and OA coverage in future missions will improve the quality and spatiotemporal coverage of our OA estimates, potentially enabling constraints on global OA distribution.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN68210 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 5; 2765-2785
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Characterization of accurate launch vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. For the National Aeronautics and Space Administration (NASA) Space Launch System (SLS), aeroacoustic environments have been derived primarily through sub-scale wind tunnel testing. Both optical techniques and high frequency pressure measurements have been utilized across multiple testing facilities and numerous vehicle configurations to develop a range of preliminary and detailed environments. As the vehicle has matured and evolved, the data collected from each subsequent configuration has allowed for comparison studies which isolate the effects of certain outer mold line (OML) features on measured fluctuating pressure levels. This paper presents observations on some of those effects for features which include abort system protuberances, various fairings geometries, interstage flanges, and multibody interactions between a central core and fall away boosters. These features, and the flow conditions produced by them, are broadly applicable to many launch vehicle configurations.
    Keywords: Spacecraft Design, Testing and Performance; Launch Vehicles and Launch Operations
    Type: M18-7124 , AIAA Science and Technology Forum and Exposition; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN45147 , Annual AIAA/USU Conference on Small Satellites; Aug 05, 2017 - Aug 10, 2017; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Isoprene oxidation schemes vary greatly among gas-phase chemical mechanisms, with potentially significant ramifications for air quality modeling and interpretation of satellite observations in biogenic-rich regions. In this study, in situ observations from the 2013 SENEX mission are combined with a constrained O-D photochemical box model to evaluate isoprene chemistry among five commonly used gas-phase chemical mechanisms: CBO5, CB6r2, MCMv3.2, MCMv3.3.1, and a recent version of GEOS-Chem. Mechanisms are evaluated and inter-compared with respect to formaldehyde (HCHO), a high-yield product of isoprene oxidation. Though underestimated by all considered mechanisms, observed HCHO mixing ratios are best reproduced by MCMv3.3.1 (normalized mean bias = -15%), followed by GEOS-Chem (-17%), MCMv3.2 (-25%), CB6r2 (-32%) and CB05 (-33%). Inter-comparison of HCHO production rates reveals that major restructuring of the isoprene oxidation scheme in the Carbon Bond mechanism increases HCHO production by only approx. 5% in CB6r2 relative to CBO5, while further refinement of the complex isoprene scheme in the Master Chemical Mechanism increases HCHO production by approx. 16% in MCMv3.3.1 relative to MCMv3.2. The GEOS-Chem mechanism provides a good approximation of the explicit isoprene chemistry in MCMv3.3.1 and generally reproduces the magnitude and source distribution of HCHO production rates. We analytically derive improvements to the isoprene scheme in CB6r2 and incorporate these changes into a new mechanism called CB6r2-UMD, which is designed to preserve computational efficiency. The CB6r2-UMD mechanism mimics production of HCHO in MCMv3.3.1 and demonstrates good agreement with observed mixing ratios from SENEX (-14%). Improved simulation of HCHO also impacts modeled ozone: at approx. 0.3 ppb NO, the ozone production rate increases approx. 3% between CB6r2 and CB6r2-UMD, and rises another approx. 4% when HCHO is constrained to match observations.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN47241 , Atmospheric Environment (ISSN 1352-2310); 164; 325-336
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total non methane organic compounds, and PM1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM1 emission estimate (1530 +/- 570 Gg/yr) is over 3 times that of the NEI PM2.5 estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. In addition, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN44715 , Journal of Geophysical Research (ISSN 2169-897X); 122; 11; 6108-6129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-05
    Description: Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NOx=NO+NO2). Here, we expand a previously developed Fuel-based Inventory of motor-Vehicle Emissions (FIVE) to the continental U.S. for the year 2013, and evaluate our estimates of mobile source emissions with the U.S. Environmental Protection Agency's National Emissions Inventory (NEI) interpolated to 2013. We find that mobile source emissions of NOx and carbon monoxide (CO) in the NEI are higher than FIVE by 28% and 90%, respectively. Using a chemical transport model, we model mobile source emissions from FIVE, and find consistent levels of urban NOx and CO as measured during the Southeast Nexus (SENEX) Study in 2013. Lastly, we assess the sensitivity of ozone (O3) over the Eastern U.S. to uncertainties in mobile source NOx emissions and biogenic volatile organic compound (VOC) emissions. The ground-level O3 is sensitive to reductions in mobile source NOx emissions, most notably in the Southeastern U.S. and during O3 exceedance events, under the revised standard proposed in 2015 (〉70 ppb, 8-hr maximum). This suggests that decreasing mobile source NOx emissions could help in meeting more stringent O3 standards in the future.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN61544 , Environmental Science and Technology (ISSN 0013-936X) (e-ISSN 1520-5851); 52; 13; 7360–7370
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-01
    Description: Global warming due to greenhouse gases and atmospheric aerosols alter precipitation rates, but the influence on extreme precipitation by aerosols relative to greenhouse gases is still not well known. Here we use the simulations from the Precipitation Driver and Response Model Intercomparison Project that enable us to compare changes in mean and extreme precipitation due to greenhouse gases with those due to black carbon and sulfate aerosols, using indicators for dry extremes as well as for moderate and very extreme precipitation. Generally, we find that the more extreme a precipitation event is, the more pronounced is its response relative to global mean surface temperature change, both for aerosol and greenhouse gas changes. Black carbon (BC) stands out with distinct behavior and large differences between individual models. Dry days become more frequent with BC-induced warming compared to greenhouse gases, but so does the intensity and frequency of extreme precipitation. An increase in sulfate aerosols cools the surface and thereby the atmosphere, and thus induces a reduction in precipitation with a stronger effect on extreme than on mean precipitation. A better understanding and representation of these processes in models will provide knowledge for developing strategies for both climate change and air pollution mitigation.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76182 , npj Climate and Atmospheric Science (e-ISSN 2397-3722); 2; 24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN23390 , Monthly Weather Review (e-ISSN 1520-0493); 143; 2386-2403
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with meeting the design objectives. This paper also addresses the design considerations associated with the use of Block 1 and Commercial Off-the-Shelf (COTS) avionics for Block 1-B/EUS as part of an integrated vehicle suite for orbital operations.
    Keywords: Launch Vehicles and Launch Operations; Spacecraft Design, Testing and Performance
    Type: M17-6253 , AAS GNC Conference; Feb 02, 2018 - Feb 07, 2018; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-12
    Description: Water vapour in the atmosphere is the source of a major climate feedback mechanism and potential increases in the availability of water vapour could have important consequences for mean and extreme precipitation. Future precipitation changes further depend on how the hydrological cycle responds to different drivers of climate change, such as greenhouse gases and aerosols. Currently, neither the total anthropogenic influence on the hydrological cycle nor that from individual drivers is constrained sufficiently to make solid projections. We investigate how integrated water vapour (IWV) responds to different drivers of climate change. Results from 11 global climate models have been used, based on simulations where CO2, methane, solar irradiance, black carbon (BC), and sulfate have been perturbed separately. While the global-mean IWV is usually assumed to increase by 7% per kelvin of surface temperature change, we find that the feedback response of IWV differs somewhat between drivers. Fast responses, which include the initial radiative effect and rapid adjustments to an external forcing, amplify these differences. The resulting net changes in IWV range from 6.40.9%K(exp -1) for sulfate to 9.82%K(exp -1) for BC. We further calculate the relationship between global changes in IWV and precipitation, which can be characterized by quantifying changes in atmospheric water vapour lifetime. Global climate models simulate a substantial increase in the lifetime, from 8.20.5 to 9.90.7d between 1986-2005 and 2081-2100 under a high-emission scenario, and we discuss to what extent the water vapour lifetime provides additional information compared to analysis of IWV and precipitation separately. We conclude that water vapour lifetime changes are an important indicator of changes in precipitation patterns and that BC is particularly efficient in prolonging the mean time, and therefore likely the distance, between evaporation and precipitation.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN74588 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324)); 19; 20; 12887-12899
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...