ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-29
    Description: Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Wei -- Emaminejad, Sam -- Nyein, Hnin Yin Yin -- Challa, Samyuktha -- Chen, Kevin -- Peck, Austin -- Fahad, Hossain M -- Ota, Hiroki -- Shiraki, Hiroshi -- Kiriya, Daisuke -- Lien, Der-Hsien -- Brooks, George A -- Davis, Ronald W -- Javey, Ali -- P01 HG000205/HG/NHGRI NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):509-14. doi: 10.1038/nature16521.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA. ; Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720, USA. ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Stanford Genome Technology Center, Stanford School of Medicine, Palo Alto, California 94304, USA. ; Integrative Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26819044" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bicycling/physiology ; Body Water ; Calibration ; Electrolytes/analysis ; Female ; Glucose/analysis ; Healthy Volunteers ; Humans ; Lactic Acid/analysis ; Male ; Monitoring, Physiologic/*instrumentation/*methods ; Precision Medicine/instrumentation/methods ; Reproducibility of Results ; Running/physiology ; Skin ; Skin Temperature ; Sweat/*chemistry ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...