ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The authors review studies conducted to define nutritional requirements for astronauts during space flight and to assess nutrition before, during, and after space flight. Topics include space food systems, research and limitations on spacecraft, physiological adaptation to weightlessness, energy requirements, dietary intake during space flight, bone demineralization, gastrointestinal function, blood volume, and nutrition requirements for space flight. Benefits of space-related nutrition research are highlighted.
    Keywords: Aerospace Medicine
    Type: Nutrition today (ISSN 0029-666X); Volume 32; 1; 6-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The purpose of this study was to compare the effects of hypergravity exposure (2g) with those of exposure to space flight in the Cosmos 2044 flight. To do so, rats were centrifuged continuously for 14 days. Two different experiments were carried out on tissue obtained from the centrifuged rats. In the first experiment, rat bone marrow cells were examined for their response to recombinant murine colony stimulating factor-granulocyte/monocyte (GM-CSF). In the second experiment, rat spleen and bone marrow cells were stained in with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and analyzed on a flow cytometer. The results of the studies indicated that bone marrow cells from centrifuged rats showed no significant change in response to GM-CSF as compared to bone marrow cells from control rats. Spleen cells from flown rats showed some statistically significant changes in leukocytes subset distribution, but no differences that appeared to be of biological significance. These results indicate that hypergravity did not greatly affect the same immunological parameters affected by space flight in the Cosmos 2044 mission.
    Keywords: Aerospace Medicine
    Type: Microgravity science and technology (ISSN 0938-0108); Volume 7; 4; 323-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P 〈 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P 〈 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P 〈 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P 〈 0.05). During bed rest, urinary pH decreased (P 〈 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 99; 1; 134-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 1089-988X); Volume 18; 2; 111-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Treatment strategies for Space Motion Sickness were compared using the results of postflight oral debriefings. Standardized questionnaires were administered to all crewmembers immediately following Space Shuttle flights by NASA flight surgeons. Cases of Space Motion Sickness were graded as mild, moderate or severe based on published criteria, and medication effectiveness was judged based on subjective reports of symptom relief. Since October 1989, medication effectiveness is reported inflight through Private Medical Conferences with the crew. A symptom matrix was analyzed for 19 crewmembers treated with an oral combination of scopolamine and dextroamphetamine (scopdex) and 15 crewmembers treated with promethazine delivered by intramuscular (IM) or suppository routes. Scopdex has been given preflight as prophaxis for Space Motion Sickness but analysis showed delayed symptom presentation in 9 crewmembers or failed to prevent symptoms in 7. Only three crewmembers who took scopdex had no symptoms inflight. Fourteen out of 15 crewmembers treated with IM promethazine and 6 of 8 treated with promethazine suppositories after symptom development had immediate (within 12 h) symptom relief and required no additional medication. There were no cases of delayed symptom presentation in the crewmembers treated with promethazine. This response is in contrast to untreated crewmembers who typically have slow symptom resolution over 72-96 h. We conclude that promethazine is an effective treatment of Space Motion Sickness symptoms inflight. NASA policy currently recommends treating crewmembers with Space Motion Sickness after symptom development, and no longer recommends prophylaxis with scopdex due to delayed symptom development and apparent variable absorption of oral medications during early flight days.
    Keywords: Aerospace Medicine
    Type: Microgravity quarterly : MGQ (ISSN 0958-5036); Volume 2; 3; 173-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: Prolonged exposure of humans and experimental animals to the altered gravitational conditions of space flight has adverse effects on the lymphoid and erythroid hematopoietic systems. Although some information is available regarding the cellular and molecular changes in lymphocytes exposed to microgravity, little is known about the erythroid cellular changes that may underlie the reduction in erythropoiesis and resultant anemia. We now report a reduction in erythroid growth and a profound inhibition of erythropoietin (Epo)-induced differentiation in a ground-based simulated microgravity model system. Rauscher murine erythroleukemia cells were grown either in tissue culture vessels at 1 x g or in the simulated microgravity environment of the NASA-designed rotating wall vessel (RWV) bioreactor. Logarithmic growth was observed under both conditions; however, the doubling time in simulated microgravity was only one-half of that seen at 1 x g. No difference in apoptosis was detected. Induction with Epo at the initiation of the culture resulted in differentiation of approximately 25% of the cells at 1 x g, consistent with our previous observations. In contrast, induction with Epo at the initiation of simulated microgravity resulted in only one-half of this degree of differentiation. Significantly, the growth of cells in simulated microgravity for 24 h prior to Epo induction inhibited the differentiation almost completely. The results suggest that the NASA RWV bioreactor may serve as a suitable ground-based microgravity simulator to model the cellular and molecular changes in erythroid cells observed in true microgravity.
    Keywords: Aerospace Medicine
    Type: In vitro cellular & developmental biology. Animal (ISSN 1071-2690); Volume 37; 2; 79-83
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-29
    Description: Calcium loss from bones during space flight creates a risk for astronauts who travel into space, and may prohibit space flights to other planets. The problem of calcium loss during space flight has been studied using animal models, bed rest (as a ground-based model), and humans in-flight. In-flight studies have typically documented bone loss by comparing bone mass before and after flight. To identify changes in metabolism leading to bone loss, we have performed kinetic studies using stable isotopes of calcium. Oral (Ca-43) and intravenous (Ca-46) tracers were administered to subjects (n=3), three-times before flight, once in-flight (after 110 days), and three times post-flight (on landing day, and 9 days and 3 months after flight). Samples of blood, saliva, urine, and feces were collected for up to 5 days after isotope administration, and were analyzed for tracer enrichment. Tracer data in tissues were analyzed using a compartmental model for calcium metabolism and the WinSAAM software. The model was used to: account for carryover of tracer between studies, fit data for all studies using the minimal number of changes between studies, and calculate calcium absorption, excretion, bone calcium deposition and bone calcium resorption. Results showed that fractional absorption decreased by 50% during flight and that bone resorption and urinary excretion increased by 50%. Results were supported by changes in biochemical markers of bone metabolism. Inflight bone loss of approximately 250 mg Ca/d resulted from decreased calcium absorption combined with increased bone resorption and excretion. Further studies will assess the time course of these changes during flight, and the effectiveness of countermeasures to mitigate flight-induced bone loss. The overall goal is to enable human travel beyond low-Earth orbit, and to allow for better understanding and treatment of bone diseases on Earth.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: Ground-based analogs of spaceflight are an important means of studying physiological and nutritional changes associated with space travel, particularly since exploration missions are anticipated, and flight research opportunities are limited. A clinical nutritional assessment of the NASA Extreme Environment Mission Operation V (NEEMO) crew (4 M, 2 F) was conducted before, during, and after the 14-d saturation dive. Blood and urine samples were collected before (D-12 and D-1), during (MD 7 and MD 12), and after (R + 0 and R + 7) the dive. The foods were typical of the spaceflight food system. A number of physiological changes were reported both during the dive and post dive that are also commonly observed during spaceflight. Serum hemoglobin and hematocrit were decreased (P less than 0.05) post dive. Serum ferritin and ceruloplasmin significantly increased during the dive, while transferring receptors tended to go down during the dive and were significantly decreased by the last day (R + 0). Along with significant hematological changes, there was also evidence for increased oxidative damage and stress during the dive. 8-hydroxydeoxyguanosine was elevated (P less than 0.05) during the dive, while glutathione peroxidase and superoxide disrnutase activities were decreased (P less than 0.05) during the dive. Serum C-reactive protein (CRP) concentration also tended to increase during the dive, suggesting the presence of a stress-induced inflammatory response, Decreased leptin during the dive (P less than 0.05) may also be related to the increased stress. Similar to what is observed during spaceflight, subjects had decreased energy intake and weight loss during the dive. Together, these similarities to spaceflight provide a model to further define the physiological effects of spaceflight and investigate potential countermeasures.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-02
    Description: As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.
    Keywords: Aerospace Medicine
    Type: Extended Duration Orbiter Medical Project; 2-1 - 2-10; NASA/SP-1999-534
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses and the operational environment for short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware will be used for long-duration lunar surface operations. Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...