ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.
    Keywords: Meteorology and Climatology
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 68-71; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: We review the basic multiple scattering theory of off-beam lidar returns from optically thick clouds using the diffusion approximation. The shape of the temporal signal - the stretched pulse - depends primarily on the physical thickness of the cloud whereas its spatial counterpart - the diffuse spot - conveys specific information on the cloud's optical thickness, as do the absolute returns. This makes observation of the weak off-beam lidar returns an attractive prospect in remote sensing of cloud properties. By estimating the signal-to-noise ratio, we show that night-time measurements can be performed with existing technology. By the same criterion, day-time operation is a challenge that can only be met with a combination of cutting-edge techniques in filtering and in laser sources.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; 91-94; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: We discuss the effect of horizontal fluxes on the accuracy of a conventional plane-parallel radiative transfer calculation for a single pixel, known as the Independent Pixel Approximation (IPA) at absorbing wavelengths. Vertically integrated horizontal fluxes can be represented as a sum of three components; each component is the IPA accuracy on a pixel-by-pixel basis for reflectance, transmittance and absorptance, respectively. We show that IPA accuracy for reflectance always improves with more absorption, while the IPA accuracy for transmittance is less sensitive to the changes in absorption: with respect to the non-absorbing case, it may first deteriorate for weak absorption and then improve again for strongly absorbing wavelengths. EPA accuracy for absorptance always deteriorates with more absorption. As a result, vertically integrated horizontal fluxes, as a sum of IPA accuracies for reflectance, transmittance and absorptance, increase with more absorption. Finally, the question of correlations between horizontal fluxes, IPA uncertainties and radiative smoothing is addressed using wavenumber spectra of radiation fields reflected from or transmitted through fractal clouds.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.
    Keywords: Meteorology and Climatology
    Type: Reports on Progress in Physics (ISSN 0034-4885); Volume 73; No. 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: A short course on off-beam cloud lidar is given. Specific topics addressed include: motivation and goal of off-beam cloud lidar; diffusion physics; numeric amalysis; and validity of the diffusion approximation. A demo of the process is included.
    Keywords: Meteorology and Climatology
    Type: Lidar for Meteorologists 101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: In this presentation we review the fractal nature of internal cloud structure from cm- to km-scales as captured by in-situ probes during long horizontal penetrations by aircraft. We uncover the non-Poissonian spatial distribution of cloud droplets at submeter scales and confirm scale-invariant behavior for large scales. Based on these structural characteristics, we generate simple fractal cloud models that reproduce statistical scaling properties of real clouds. These stochastic models represent a link between nonlinear science, in general, and cloud-radiation interaction, in particular. Next we run three-dimensional radiative transfer computations on these synthetic fractal clouds and compare the structure of the resulting radiation fields with the known structure of the cloud model and with satellite images of real clouds. The different behaviors observed for small and large-scale variabilities will be discussed in detail. We find that while the large-scale fluctuations of the resulting radiation fields resemble those in the original scale-invariant cloud structure, the radiation at small scales is much smoother than its cloud liquid water counterpart. This violates scale-invariance and produces a scale-break at 0.2-0.5 km that is clearly observed in high-resolution satellite data such as from Landsat. Finally, we show how radiative transfer Green function theory in the photon diffusion limit explains (and predicts) the above phenomena of "radiative smoothing."
    Keywords: Meteorology and Climatology
    Type: AGU Spring Meeting; May 29, 2001 - Jun 02, 2001; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: To meet its objective of reducing operations costs without incurring a corresponding increase in risk, NASA is seeking new methods to automate mission operations. This paper examines the state of the art in automating ground operations for space missions. A summary of available technologies and methods for automating mission operations is provided. Responses from interviews with several space mission FOTs (Flight Operations Teams) to assess the degree and success of those technologies and methods implemented are presented. Mission operators that were interviewed approached automation using different tools and methods resulting in varying degrees of success - from nearly completely automated to nearly completely manual. Two key criteria for successful automation are the active participation of the FOT in the planning, designing, testing, and implementation of the system and the relative degree of complexity of the mission.
    Keywords: Meteorology and Climatology
    Type: FLAIRS Conference; May 21, 2001 - May 23, 2001; Key West, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Success in three aspects of OCO2 mission is threatened by unaccounted spa,al variability effects, all involving atmospheric scattering: 1. Low/moderately opaque clouds can escape the prescreening by mimicking a brighter surface. 2. Prescreening does not account for longrange radia,ve impact (adjacency effect) of nearby clouds. Need for extended cloud masking? 3. Oblique looks in target mode are highly exposed to surface adjacency and aerosol variability effects.We'll be covering all three bases!
    Keywords: Meteorology and Climatology
    Type: International Workshop on Greenhouse Gas Measurements from Space (IWGGMS8); Jun 18, 2012 - Jun 22, 2012; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The vertical profiling ofCO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.
    Keywords: Meteorology and Climatology
    Type: NF1676L-12660 , Journal of Atmospheric and Oceanic Technology (ISSN 1520-0426); 28; 3; 365-377
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: During the Tropical Composition, Clouds, and Climate Coupling (TC4) experiment in July-August 2007, the NASA WB-57F and ER-2 aircraft made coordinated flights through a tropopause subvisible cirrus (SVC) layer off the Pacific Coast of Central America. The ER-2 aircraft was equipped with a remote sensing payload that included the cloud physics lidar (CPL). The WB-57F payload included cloud microphysical and trace gas measurements, and the aircraft made four vertical profiles through the SVC layer shortly after the ER-2 flew over. The in situ and remotely sensed data are used to quantify the meteorological and microphysical properties of the SVC layer, and these data are compared to the limited set of SVC measurements that have previously been made. It is found that the layer encountered was particularly tenuous, with optical depths (tau) between about 10(exp -4) and 10(exp -3). From the in situ and other meteorological data, radiative heating rate perturbations of approx.0.05-0.1 K/day are calculated. These heating rates are smaller than previous estimates for tropopause SVC, consistent with the smaller tau in the present study. Coverage statistics based on CPL data from other TC4 flights indicate that this cloud was not an outlier among the sampled population. SVC with properties similar to the one presented here are below the detection limit of space \based lidars such as CALIPSO, and a comparison with the TC4 statistics suggests that a majority (〉50%) of tropopause SVC (with tau 〈 0.01) could be unaccounted for in studies using CALIPSO data.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN2560 , Journal of Geophysical Research - Atmospheres (ISSN 0148-0227); 115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...