ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (16)
  • Spacecraft Design, Testing and Performance  (13)
  • 2000-2004  (29)
  • 1
    Publication Date: 2018-06-08
    Keywords: Earth Resources and Remote Sensing
    Type: International Geoscience and Remote Sensing Symposium (IGARSS); Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-12
    Description: Historically, our ability to predict and postdict surface charging has suffered from both a lack of reliable secondary emission and backscattered electron yields and poor characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. For 13 years Los Alamos National Laboratory (LANL) has been accumulating measurements of electron and proton spectra from Magnetospheric Plasma Analyzer (MPA) instruments aboard a series of geosynchronous satellites. These data provide both a plasma characterization and the potential of the instrument ground. We use electron and ion flux spectra measured by the LANL MPA to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We calculate the spacecraft potential using both the measured fluxes and several different fits to these fluxes. These flux measurements and fits have been corrected for the difference between the measured and calculated potential. The potentials computed using the measured fluxes, the best available material properties of graphite carbon, and a secondary electron escape fraction of 81%, are within a factor of three of the measured potential for nearly all the data. Using a Kappa fit to the electron distribution function and a Maxwellian fit to the ion distribution function gives agreement similar to the calculations using the actual data. Alternative spectral representations, including Maxwellian and double Maxwellian for both species, lead to less satisfactory agreement between predicted and measured potentials.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 8th Spacecraft Charging Technology Conference; NASA/CP-2004-213091
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-12
    Description: Nascap-2k is the modern replacement for the older 3-D charging codes NASCAP/GEO, NASCAP/LEO, POLAR, and DynaPAC. Built on the DynaPAC kernel and incorporating surface charging, environment and space potential models from the older codes, Nascap-2k performs charging calculations for a wide variety of space environments under control of a unified graphical interface. In this paper we illustrate the use of Nascap-2k for spacecraft charging calculations. We touch on some of the unique physical and mathematical models on which the code is based. Examples/demos include the use of Object Toolkit, charging calculations in geosynchronous substorm, solar wind, low earth orbit, and auroral environments, and display and analysis of surface potentials, space potentials and particle trajectories.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 8th Spacecraft Charging Technology Conference; NASA/CP-2004-213091
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Description: The Local Scale Observation Site (LSOS) is the smallest study site of the Cold LandProcesses Experiment (CLPX) and is located within the Fraser Meso-cell Study Area (MSA), near the Fraser Experimental Forest Headquarters Facility, in Fraser, CO USA.The 100-m x 100-m site consists of a small open field, a managed dense canopy and an open, mixed age canopy. Unlike the other components of the experiment, which focus on spatial distributions at relatively brief snapshots in time, measurements at the local scale site focused on the temporal domain.
    Keywords: Earth Resources and Remote Sensing
    Type: Fall Meeting of the American Geophysical Union; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality assurance/quality control analyses were performed on each dataset. Cross sections extracted form the high density and then the decimated datasets were individually input into an H&H model to determine the model's sensitivity to topographic variation and the effect of that variation on the resulting water profiles. Additional analysis was performed on the Brownsville, Texas, LIDAR data to determine the percentage of returns that "penetrated" various types of canopy or vegetative cover. It is hoped that the results of these studies will benefit state and local communities as they consider the post spacing at which to acquire LIDAR data (which affects cost) and will benefit FEMA as the Agency assesses the use of different technologies for updating National Flood Insurance Program and related products.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0003-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: The NASA Charging Analyzer Program (NASCAP) spacecraft charging software developed by Maxwell Technologies has been widely used for the past fifteen to twenty years in satellite design and investigation of spacecraft charging related anomalies. Individual versions of the NASCAP software are available for use in low inclination, low Earth orbit environments (NASCAP[LEO) and geostationary orbit environments (NASCAP/GEO). In addition, the Potentials of Large objects in the Auroral Region (POLAR) code is available for use in LEO polar orbit environments. NASCAP/GEO and POLAR were both written in the 1980's using algorithms appropriate for the computers of the time. They solve the Poisson-Vlasov system for currents and densities assuming limited speed and memory of computer systems standard for the day. In addition, use of the charging models requires individual input files that are not readily transported into the various codes to facilitate comparison of results by the user.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 7th Spacecraft Charging Technology Conference; Apr 23, 2001 - Apr 27, 2001; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Microwave Anisotropy Probe (MAP) was launched June 30, 2001 to create an all-sky map of the Cosmic Microwave Background. The mission's hardware suite included two Lockheed Martin AST-201 star trackers, two Kearfott Two-Axis Rate Assemblies (TARAs) mounted to provide X, Y and redundant Z-axis rates, two Adcole Digital Sun Sensor (DSS) heads sharing one set of electronics, twelve Adcole Coarse Sun Sensor (CSS) eyes, three Ithaco E-sized Reaction Wheel Assemblies (RWAs), and a Propulsion Subsystem that employed eight PRIMEX Rocket Engine Modules (REMs). This hardware has allowed MAP to meet its various Orbit and Attitude Control Requirements, including performing a complex zero-momentum scan, meeting its attitude determination requirements, and maintaining a trajectory that places MAP in a lissajous orbit around the second Sun-Earth Lagrange point (L2) via phasing loops and a lunar gravity assist. Details of MAP's attitude determination, attitude control, and trajectory design are presented separately. This paper will focus on the performance of the hardware components mentioned above, as well as the significant lessons learned through the use of these components. An emphasis will be placed on spacecraft design modifications that were needed to accommodate existing hardware designs into the MAP Observatory design.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Guidance and Control Conference; Aug 01, 2002; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to missions such as DRACO with the intent that mission operations costs be significantly reduced. The goal of the Constellation Spacecraft Trend Analysis Toolkit (CSTAT) project is to serve as the pathfinder for a fully automated trending system to support spacecraft constellations. The development approach to be taken is evolutionary. In the first year of the project, the intent is to significantly advance the state of the art in current trending systems through improved functionality and increased automation. In the second year, the intent is to add an expert system shell, likely through the adaptation of an existing commercial-off-the-shelf (COTS) or government-off-the-shelf (GOTS) tool to implement some level of the trending intelligence that humans currently provide in manual operations. In the third year, the intent is to infuse the resulting technology into a near-term constellation or formation-flying mission to test it and gain experience in automated trending. The lessons learned from the real missions operations experience will then be used to improve the system, and to ultimately incorporate it into a fully autonomous, closed-loop mission operations system that is truly capable of supporting large constellations. In this paper, the process of automating trend analysis for spacecraft constellations will be addressed. First, the results of a survey on automation in spacecraft mission operations in general, and in trending systems in particular will be presented to provide an overview of the current state of the art. Next, a rule-based model for implementing intelligent spacecraft subsystem trending will be then presented, followed by a survey of existing COTS/GOTS tools that could be adapted for implementing such a model. The baseline design and architecture of the CSTAT system will be presented. Finally, some results obtained from initial software tests and demonstrations will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AI, Robotics and Automation in Space; Jun 01, 2001; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: Earth science research and application requirements for multispectral data have often been driven by currently available remote sensing technology. Few parametric studies exist that specify data required for certain applications. Consequently, data requirements are often defined based on the best data available or on what has worked successfully in the past. Since properites such as spatial resolution, swath width, spectral bands, signal-to-noise ratio (SNR), data quantization, and band-to-band registration drive sensor platform and spaceraft system architecture and cost, analysis of these criteria is important to objectively optimize system design. Remote sensing data requirements are also linked to calibration and characterization methods. Parameters such as spatial resolution, radiometric accuracy, and geopositional accuracy affect the complexity and cost of calibration methods. However, there are few studies that quantify the true accuracies required for specific problems. As calibration methods and standards are proposed, it is important that they be tied to well-known data requirements. The Application Research Toolbox (ART) developed at Stennis Space Center provides a simulation-based method for multispectral data requirements development. The ART produces simulated data sets from hyperspectral data through band synthesis. Parameters such as spectral band shape and width, SNR, data quantization, spatial resolution, and band-to-band registration can be varied to create many different simulated data products. Simulated data utility can then be assessed for different applications so that requirements can be better understood. This paper describes the ART and its applicability for rigorously deriving remote sensing data requirements.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-2002-00010-SSC , International Society of Photogrammetry and Remote Sensing Commission I Mid-Term Symposium; Nov 08, 2002 - Nov 15, 2002; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...