ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (140)
Collection
Language
Journal
  • 1
    Publication Date: 2015-11-26
    Description: Author(s): B. R. Marks, P. A. DeYoung, J. K. Smith, T. Baumann, J. Brown, N. Frank, J. Hinnefeld, M. Hoffman, M. D. Jones, Z. Kohley, A. N. Kuchera, B. Luther, A. Spyrou, S. Stephenson, C. Sullivan, M. Thoennessen, N. Viscariello, and S. J. Williams The neutron-unbound nucleus Be 13 was populated with a nucleon exchange reaction from a 71 MeV/u secondary B 13 beam. The decay-energy spectrum was reconstructed using invariant mass spectroscopy based on Be 12 fragments in coincidence with neutrons. The data could be described with an s -wave resonance… [Phys. Rev. C 92, 054320] Published Mon Nov 23, 2015
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-07
    Description: Author(s): J. Snyder, T. Baumann, G. Christian, R. A. Haring-Kaye, P. A. DeYoung, Z. Kohley, B. Luther, M. Mosby, S. Mosby, A. Simon, J. K. Smith, A. Spyrou, S. Stephenson, and M. Thoennessen The neutron-unbound nucleus 15 Be was observed for the first time. It was populated using neutron transfer from a deuterated polyethylene target with a 59 MeV/u 14 Be beam. Neutrons were measured in coincidence with outgoing 14 Be particles and the reconstructed decay energy spectrum exhibits a resonan... [Phys. Rev. C 88, 031303] Published Fri Sep 06, 2013
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-23
    Description: ABSTRACT This study considers long-term precipitation and temperature variability across the Caribbean using two gridded data sets (CRU TS 3.21 and GPCCv5). We look at trends across four different regions (Northern, Eastern, Southern and Western), for three different seasons (May to July, August to October and November to April) and for three different periods (1901–2012, 1951–2012 and 1979–2012). There are no century-long trends in precipitation in either data set, although all regions (with the exception of the Northern Caribbean) show decade-long periods of wetter or drier conditions. The most significant of these is for the Southern Caribbean region which was wetter than the 1961–1990 average from 1940 to 1956 and then drier from 1957 to 1965. Temperature in contrast shows statistically significant warming everywhere for the periods 1901–2012, 1951–2012 and for over half the area during 1979–2012. Data availability is a limiting issue over much of the region and we also discuss the reliability of the series we use in the context of what is known to be available in the CRU TS 3.21 data set. More station data have been collected but have either not been fully digitized yet or not made freely available both within and beyond the region.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-11
    Description: Do not rely on the widely accepted rule that vicinal, sp 3 -positioned protons in cyclopentene moieties should always have more positive 3 J NMR coupling constants for the cis than for the trans arrangement: Unrecognized exceptions might misguide one to wrong stereochemical assignments and thence to erroneous mechanistic conclusions. We show here that two structurally innocent-looking 2,3-dibromo-1,1-dimethylindanes violate the rule by means of their values of 3 J (cis) = 6.1 Hz and 3 J (trans) = 8.4 Hz. The stereoselective formation of the trans diastereomer from 1,1-dimethylindene was improved with the tribromide anion (Br 3 − ) as the brominating agent in place of elemental bromine; the ensuing, regiospecific HBr elimination afforded 3-bromo-1,1-dimethylindene. The addition of elemental bromine to the latter compound, followed by thermal HBr elimination, furnished 2,3-dibromo-1,1-dimethylindene, whose Br/Li interchange reaction, precipitation, and subsequent protolysis yielded only 2-bromo-1,1-dimethylindene. Beilstein J. Org. Chem. 2016, 12, 1178–1184. doi:10.3762/bjoc.12.113
    Keywords: base-free dehydrobrominationcis/trans stereochemistryfive-membered ring conformationindenesNMR couplings
    Electronic ISSN: 1860-5397
    Topics: Chemistry and Pharmacology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-15
    Description: Under global warming the Caribbean is projected to be significantly drier by century's end during its primary rainy season from May to November. The PRECIS regional model is used to simulate the end-of-century (2071–2100) manifestation of the Caribbean Low Level Jet (CLLJ) under two Intergovernmental Panel on Climate Change (IPCC) global warming scenarios. The CLLJ is a feature of the Intra-American seas which during its July peak is dynamically linked to a brief mid-summer drying and interruption of the Caribbean rainy season. The regional model captures the CLLJ's present-day spatial and temporal characteristics reasonably well, simulating both the boreal winter (February) and summer (July) peaks. Under global warming there is an intensification of the CLLJ's core strength from May through November. The intensification is such that by October the CLLJ is of comparable core strength to its present-day peak in July. The persistence of the strong CLLJ beyond July and through November is linked to the perpetuation of a dry pattern in the Caribbean in the future. In contrast, the boreal winter manifestation of the CLLJ is largely unaltered in the future. Copyright © 2012 Royal Meteorological Society
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-20
    Description: Under global warming the Caribbean is projected to be significantly drier by century's end during its primary rainy season from May to November. The PRECIS regional model is used to simulate the end-of-century (2071–2100) manifestation of the Caribbean Low Level Jet (CLLJ) under two Intergovernmental Panel on Climate Change (IPCC) global warming scenarios. The CLLJ is a feature of the Intra-American seas which during its July peak is dynamically linked to a brief mid-summer drying and interruption of the Caribbean rainy season. The regional model captures the CLLJ's present-day spatial and temporal characteristics reasonably well, simulating both the boreal winter (February) and summer (July) peaks. Under global warming there is an intensification of the CLLJ's core strength from May through November. The intensification is such that by October the CLLJ is of comparable core strength to its present-day peak in July. The persistence of the strong CLLJ beyond July and through November is linked to the perpetuation of a dry pattern in the Caribbean in the future. In contrast, the boreal winter manifestation of the CLLJ is largely unaltered in the future. Copyright © 2012 Royal Meteorological Society
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-09-21
    Description: Interbasin and intrabasin gradients play an important role as a part of a regional system of Caribbean climate drivers, which include the Atlantic warm pool (AWP) and the Caribbean low-level jet (CLLJ). When the Caribbean is conditioned to be wet between May and November, near-surface geopotentials in the Caribbean are lower than in the nearby eastern tropical Pacific and east tropical Atlantic. As a result, there is vertical ascent in the Caribbean through to the middle troposphere which connects to zonal circulations with both the eastern tropical Pacific and the eastern tropical Atlantic. The Caribbean Sea is also warm, and there is a moderate easterly flow regime, indicating a weakening of the trade winds. Deviations from this state caused by changes in one or both sides of the Pacific-Caribbean and Caribbean-Atlantic circulations (and diagnosed by changes in their geopotential gradients) reasonably track the transition of the Caribbean from wet to dry and vice versa on intraseasonal and interannual time scales. The study also uses changes to the gradients to offer insight into why the Caribbean region is projected to be drier during its traditional rainy season in the face of warmer surface temperatures under global warming. The Caribbean seemingly enters into a “July” mode, which persists for the duration of the boreal summer. The mode is characterized by higher (lower) geopotentials in the Caribbean (Pacific and Atlantic), a stronger CLLJ, and anomalous descent in the Caribbean in spite of the warmer surface temperatures.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-27
    Description: This study assesses the skill of four statistical models in hindcasting North Atlantic annual tropical cyclone (TC) frequency over 1950–2008 with the aim of projecting future activity. Three of the models are motivated by operational statistical forecast schemes and are premised on standard hurricane predictors including sea surface temperatures (SSTs) and near-surface zonal winds. The fourth model uses an SST-gradient index previously proposed for Caribbean seasonal rainfall prediction. The statistical models, created from backward regression, explain 24-48% of the observed variability in 1950-2008 annual TC frequency. The future state of the predictors are extracted from the ECHAM5, HadCM3, MRI CGCM2.3.2a and MIROC3.2 GCM simulations under the Coupled Model Intercomparison Project Phase 3 (CMIP3). Models utilizing SST and near-surface wind predictors suggest significant increases in mean annual frequency by 2-8 TCs by 2070-2090, compared to a single surface wind predictor model, indicating that positive trends in SSTs under global warming have a larger relative influence on projections than changes in the variability of the surface winds. Wind-only models exhibit declines in TC frequency while the SST-gradient model yields little change relative to the present-day mean. Backward regression reapplied against the 1990-2008 period, analogous to future warmer oceanic and atmospheric state relative to the earlier years in the record, retains only the CLLJ-type predictors, explaining up to 82% of TC frequency variability and suggesting a more dominant role for the CLLJ in a warmer climate. Projections using the new models show either a more conservative increase or a stronger decrease in frequency, consistent with a stronger CLLJ.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-10
    Description: The Journal of Organic Chemistry DOI: 10.1021/acs.joc.8b01971
    Print ISSN: 0022-3263
    Electronic ISSN: 1520-6904
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-12
    Description: ABSTRACT The Statistical Downscaling Model (SDSM) is used to investigate future projections of daily minimum and maximum temperature extremes for 45 stations and rainfall extremes for 39 stations across the Caribbean and neighbouring regions. Models show good skill in reproducing the monthly climatology of the mean daily temperatures and the frequencies of warm days, warm nights, cool days and cool nights between 1961 and 2001. Models for rainfall exhibit lower skill but generally capture the monthly climatology of mean daily rainfall and the spatial distribution of the mean annual maximum number of consecutive dry days (CDD) and mean annual count of days with daily rainfall above 10 mm (R10). Future projections suggest an increase (decrease) in warm (cool) days and nights by 2071–2099 under the A2 and B2 scenarios relative to 1961–1990. An increase in CDD is suggested for most stations except some eastern Caribbean stations and Bahamas. Decreases in RX1 (monthly maximum 1-day precipitation), R10 and R95p (annual total rainfall above the 95th percentile) are also suggested for some northern Caribbean locations and Belize under the A2 scenario, compared to a mixture of increases and decreases for the eastern Caribbean. Atmospheric predictors used in SDSM correlate well with known oceanic and atmospheric drivers of Caribbean climate, e.g. the Atlantic Multidecadal Oscillation (AMO) on a seasonal timescale. Atlantic sea surface temperatures and the Caribbean low level jet appear to have significant influence on Caribbean temperature and rainfall extremes. Initiatives have explored future Caribbean rainfall and temperature extremes. These relied on outputs from global and regional climate models and a weather generator. Here, the Statistical Downscaling Model (SDSM), a hybrid of regression and stochastic weather generator approaches is used. Results suggest more frequent warm events and variable responses in extreme rainfall by 2071–2099 under A2 and B2 scenarios. Atmospheric predictors in SDSM correlate well with known oceanic and atmospheric drivers of Caribbean climate, e.g. Atlantic Multidecadal Oscillation (AMO) on seasonal timescales.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...