ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2023-07-19
    Beschreibung: Limited constraints on the variability of the deep‐water production in the Labrador Sea complicate reconstructions of the strength of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Quaternary. Large volumes of detrital carbonates were repeatedly deposited in the Labrador Sea during the last 32 kyr, potentially affecting radiogenic Nd isotope signatures. To investigate this the Nd isotope compositions of deep and intermediate waters were extracted from the authigenic Fe‐Mn oxyhydroxide fraction, foraminiferal coatings, the residual silicates and leachates of dolostone grains. We provide a first order estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea. During the Last Glacial Maximum the Nd isotope signatures in the Labrador Sea would allow active water mass mixing with more radiogenic ɛNd values (−12.6 and −14) prevailing in its eastern part whereas less radiogenic values (ɛNd ∼ −18.4) were found on the western Labrador slope. The deposition of detrital carbonates during Heinrich stadials (2,1) was accompanied by negative detrital and authigenic Nd isotope excursions (ɛNd ∼ −31) that were likely controlled by dissolution of dolostone or dolostone associated mineral inclusions. This highly unradiogenic signal dominated the authigenic phases and individual water masses in the Labrador Sea, serving as potential source of highly unradiogenic Nd to the North Atlantic region, while exported southward. The Holocene authigenic ɛNd signatures of the coatings and leachates significantly differed from those of the detrital silicates, approaching modern bottom water mass signatures during the Late Holocene.
    Beschreibung: Plain Language Summary: The Labrador Sea is an important region for deep water formation and for the ocean circulation in the Atlantic region. Over the last 32 thousand years, numerous discharges from melting glaciers added freshwater to the Labrador Sea which could help understand the future effects of current melting glaciers. This information is necessary to better constrain climate predictions in order to gauge the effects on the Global Ocean Water Circulation. However, past deep water production in the Labrador is still poorly constrained, complicating reconstruction of the Atlantic Meridional Overturning Circulation on different timescales. In this study we investigated changes in deep and intermediate water mass circulation patterns over the last 32 kyr based on the radiogenic Nd isotope compositions that serve as a water mass circulation proxy. Analysis of four marine sediment cores show that the deposition of large volumes of detrital carbonates during studied period had a large effect on the recorded in the sediment column signals. New data suggest active water mass circulation during the maximum extent of glacial ice sheets. The modern day ocean circulation patterns have emerged during the Late Holocene (6 ka).
    Beschreibung: Key Points: Estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea. Dissolution of detrital dolostones in the water column during Heinrich stadials at least partially controlled ɛNd signatures. During the LGM generally more radiogenic signatures possibly indicate active water mass advection and mixing in the Labrador Sea.
    Beschreibung: GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel http://dx.doi.org/10.13039/501100003153
    Beschreibung: Kiel University
    Beschreibung: https://doi.org/10.1594/PANGAEA.952659
    Schlagwort(e): ddc:551.9 ; Labrador Sea ; Late Quaternary ; Paleoceanography ; neodymium isotopes ; dolostone ; AMOC ; carbonate dissolution ; Heinrich stadials
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-03-06
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-07-03
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-01-05
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    In:  [Poster] In: International Conference on Paleoceanography 2016, 28.08.-02.09.2016, Utrecht, Netherlands .
    Publikationsdatum: 2017-01-05
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-06-18
    Beschreibung: The Palaeocene-Eocene Thermal Maximum(1,2) (PETM) was a global warming event that occurred about 56 million years ago, and is commonly thought to have been driven primarily by the destabilization of carbon from surface sedimentary reservoirs such as methane hydrates(3). However, it remains controversial whether such reservoirs were indeed the source of the carbon that drove the warming(1,3-5). Resolving this issue is key to understanding the proximal cause of the warming, and to quantifying the roles of triggers versus feedbacks. Here we present boron isotope data-a proxy for seawater pH-that show that the ocean surface pH was persistently low during the PETM. We combine our pH data with a paired carbon isotope record in an Earth system model in order to reconstruct the unfolding carbon-cycle dynamics during the event(6,7). We find strong evidence for a much larger (more than 10,000 petagrams)-and, on average, isotopically heavier-carbon source than considered previously(8,9). This leads us to identify volcanism associated with the North Atlantic Igneous Province(10,11), rather than carbon from a surface reservoir, as the main driver of the PETM. This finding implies that climate-driven amplification of organic carbon feedbacks probably played only a minor part in driving the event. However, we find that enhanced burial of organic matter seems to have been important in eventually sequestering the released carbon and accelerating the recovery of the Earth system(12).
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Paleoceanography and Paleoclimatology, 33 (5). pp. 530-543.
    Publikationsdatum: 2021-02-08
    Beschreibung: The notion of a shallow northern sourced intermediate water mass is a well evidenced feature of the Atlantic circulation scheme of the Last Glacial Maximum (LGM). However, recent observations from stable carbon isotopes (δ13C) at the Corner Rise in the deep northwest Atlantic suggested a significant contribution of a Northern Component Water mass to the abyssal northwest Atlantic basin that has not been described before. Here we test the hypothesis of this northern sourced water mass underlying the southern sourced glacial Antarctic Bottom Water by measuring the authigenic neodymium (Nd) isotopic composition from the same sediments from 5,010-m water depth. Neodymium isotopes act as a semiconservative water mass tracer capable of distinguishing between Northern and Southern Component Waters at the northwest Atlantic. Our new Nd isotopic record resolves various water mass changes from the LGM to the early Holocene in agreement with existing Nd-based reconstructions from across the west Atlantic Ocean. Especially pronounced are the Younger Dryas and Bølling-Allerød with unprecedented changes in the Nd isotopic composition. For the LGM we found Nd isotopic evidence for a northern sourced water mass contributing to abyssal depths, thus being in agreement with previous δ13C data from Corner Rise. Overall, however, the deep northwest Atlantic was still dominated by southern sourced water, since we found signatures that are intermediate between northern and southern end member compositions. Furthermore, this new record indicates that C and Nd isotopes were partly decoupled, pointing to nonconservative behavior of one or more likely of both water mass proxies during the LGM.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2020-02-06
    Beschreibung: Combined seawater radiogenic hafnium (Hf) and neodymium (Nd) isotope compositions were extracted from bulk sediment leachates and foraminifera of Site 1088, ODP Leg 177, 2082 m water depth on the Agulhas Ridge. The new data provide a continuous reconstruction of long and short-term changes in ocean circulation and continental weathering inputs since the Mid-Miocene. Due to its intermediate water depth the sediments of this core sensitively recorded changes in admixture of North Atlantic Deep Water (NADW) to the Antarctic Circumpolar Current (ACC) as a function of the strength of the Atlantic Meridional Overturning Circulation (AMOC). Nd isotope compositions (εNd) range from -7 to -11 with glacial values generally 1 to 3 units more radiogenic than during the interglacials of the Quaternary. The data reveal episodes of significantly increased AMOC strength during late Miocene and Pliocene warm periods whereas peak radiogenic εNd values mark a strongly diminished AMOC during the major intensification of Northern Hemisphere Glaciation near 2.8 Ma and in the Pleistocene after 1.5 Ma. In contrast, the Hf isotope compositions (εHf) show an essentially continuous evolution from highly radiogenic values of up to +11 during the Miocene to less radiogenic present day values (+2 to +4) during the late Quaternary. The data document a long-term transition in dominant weathering inputs, where inputs from the South America are replaced by those from Southern Africa. Moreover, radiogenic peaks provide evidence for the supply of radiogenic Hf originating from Patagonian rocks to the Atlantic sector of the Southern Ocean via dust inputs.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-02-06
    Beschreibung: We present the first subprecessional record of seawater 87Sr/86Sr isotope ratios for a marginal Mediterranean subbasin. The sediments contained in this interval (three precessional cycles between 6.60 and 6.55 Ma) are important because they record conditions during the transition to the Messinian Salinity Crisis (MSC; 5.97 to 5.33 Ma), an event for which many details are still poorly understood. The record, derived from planktic foraminifera of the late Miocene Sorbas Basin (SE Spain), shows brief excursions with precessional cyclicity to 87Sr/86Sr ratios higher than coeval ocean 87Sr/86Sr. The hydrologic conditions required to generate the observed record are investigated using box modeling, constrained using a new paleodepth estimate (150 to 250 m) based on benthic foraminiferal assemblages. The box model results highlight the role of climate-driven interbasin density contrast as a significant driver of, or impediment to, exchange. The results are particularly significant in the context of the MSC, where 87Sr/86Sr excursions have been interpreted purely as a consequence of physical restriction. To replicate the observed temporal patterns of lithological variations and 87Sr/86Sr isotope excursions, the Sorbas Basin “box” must have a mainly positive hydrologic budget, in contrast with the Mediterranean's negative budget during the late Miocene. This result has implications for the assumption of synchronous deposition of specific sedimentary layers (sapropels) between marginal and open Mediterranean settings at subprecessional resolution. A net positive hydrologic budget in marginal Mediterranean subbasins may reconcile observations of freshwater inclusions in gypsum deposits.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2018-02-12
    Beschreibung: The Permian-Triassic mass extinction represents the most severe environmental crisis in Earth’s history, which dictated the course for evolution of life until today. Volcanism from Siberian traps played a significant role involving a substantial input of relatively light carbon into the atmosphere leading to a combination of global warming by ~6°C, sporadic anoxia or euxinia, and ocean acidification. However, its detailed manifestation and environmental impact is yet to be fully understood. This lack of knowledge also extends to a better quantification of emitted and sequestered carbon budgets (cf. Gutjahr et al., 2017).
    Materialart: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...