ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-07
    Description: Here we report the preliminary results of GPS data inversions for coseismic and initial afterslip distributions of the Mw 6.3 2009 April 6 L’Aquila earthquake. Coseismic displacements of continuous and survey-style GPS sites, show that the earthquake ruptured a planar SW-dipping normal fault with ∼0.6 m average slip and an estimated moment of 3.9 × 1018 Nm. Geodetic data agree with the seismological and geological information pointing out the Paganica fault, as the causative structure of the main shock. The position of the hypocentre relative to the coseismic slip distribution supports the seismological evidence of southeastward rupture directivity. These results also point out that the main coseismic asperity probably ended downdip of the Paganica village at a depth of few kilometres in agreement with the small (1–10 cm) observed surface breaks. Time-dependent post-seismic displacements have been modelled with an exponential function. The average value of the estimated characteristic times for near-field sites in the hanging-wall of the fault is 23.9 ± 5.4 d. The comparison between coseismic slip and post-seismic displacements for the first 60 d after the main shock, shows that afterslip occurred at the edges of the main coseismic asperity with a maximum estimated slip of ∼25 cm and an equivalent seismic moment of 6.5 × 1017 Nm. The activation of the Paganica fault, spatially intermediate between the previously recognized main active fault systems, suggests that strain accumulation in the central Apennines may be simultaneously active on distinct parallel fault systems.
    Description: Published
    Description: 1539–1546
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.9. Rete GPS nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: satellite geodesy ; earthquake source observations ; Continental tectonics: extensional ; Europe ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Determining maximum magnitude in Europe (SHARE project) from earthquake and active fault data
    Description: Unpublished
    Description: San Francisco - California (USA)
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: open
    Keywords: Maximum magnitude ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This deliverable represents the result of the activities performed by a working group at INGV. The main object of the Task 3.5 is defined in the Description of Work. This task will produce a homogeneous assessment (possibly multiple models) of the distribution of the expected Maximum Magnitude for earthquakes expected in various tectonic provinces of Europe, to serve as input for the computation and validation of seismic hazard. This goal will be achieved by combining input from earthquake catalogues, regional strain rates, knowledge of active faults and seismogenic zones, as well as the definition of the seismic source zones. As stated above, the maximum magnitude (Mmax) has to be derived by the combination of several products of the Work Package 3. The deadline of the other deliverables is contemporary or subsequent to the scheduled release of the Mmax map; this means that at the moment it is not possible to provide a final map, but only to describe the preliminary work and the delineated approach for getting the final version of the deliverable. In fact the determination of Mmax has to be based on an earthquake catalog and on a seismic source zones (SSZs) model. At the 18-months deadline (the deadline for Deliverable 3.3) the catalog is not yet released in a proper way for the aim of this task and the seismic source zones model is available in a preliminary release. According to the temporal alignment of the deliverables, the SHARE Management Committee decided in the 4th teleconference meeting that an outline of the methods to be used in the PSHA including a review of state-of-the-art Mmax determination practices shall be presented including preliminary examples. This first version is presented here. With both, the final earthquake catalog and source zones models available (D3.1, D3.2 and D3.4), a final version will be released.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: open
    Keywords: Maximum magnitude ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: SHARE (Seismic Hazard Harmonization in Europe, http://www.share-eu.org/) is a collaborative project (2009-2012) in the FP7 EU cooperation programme aimed at providing an updated community-based seismic hazard model for the Euro-Mediterranean region. It is also one of the Regional Programmes of the Global Earthquake Model (GEM, http://www.globalquakemodel.org/) providing essential input and feedback on all hazard assessment procedures and standards in Europe. In the frame of SHARE, a specific task is devoted to the evaluation of the expected maximum magnitude (Mmax) for earthquakes in Europe. The standard Cornell-McGuire approach to probabilistic seismic hazard assessment (PSHA), in fact, requires to defining the magnitude of the largest earthquake thought to be possible within each considered source zone to avoid including unrealistically large events. Mmax is thus taken as the upper truncation magnitude of the truncated exponential (Gutenberg-Richter) frequency-magnitude distribution for each source. It is a crucial parameter in PSH studies, particularly for long return periods estimations (e.g., for designing critical facilities). We present the results of Mmax determination for the first one of the two alternative seismogenic source zone models adopted in the project: i) a classical model constituted by area source zones where seismicity is uniformly distributed and activity rates derive from earthquake catalogue only, and ii) a fault source model integrated by zones of background seismicity. For the latter, Mmax essentially derives from fault data only.
    Description: Unpublished
    Description: Trieste - Italy
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: open
    Keywords: Maximum magnitude ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...