ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: For some time, onset of the Antarctic Circumpolar Current (ACC) was considered to have caused or stabilised full Antarctic glaciation. Recently, however, the importance of the ACC in this role has been questioned. In order to understand the relationship between the ACC and Antarctic glaciation, and thence the importance of ocean circulation to palaeoclimate, we need to determine the development history of both processes. To this end, we summarise all published estimates of ACC onset. The time of onset, of shallow circulation or deep, is uncertain, whether based on tectonic studies or the interpretation of changes in the sediment record. Two potential final barriers to circumpolar flow have been identified; south of Tasmania and south of South America. The former is well constrained by tectonics and marine geology to before 32Ma for a deep gap, with a shallow gap in place by 35.5Ma at the latest. These ages fit nicely with the onset of full Antarctic glaciation at 33–34 Ma, although some workers question the causality. Estimates of the time of opening of the latter range widely, whether based on tectonics or sedimentary geology, from as recently as 6Ma to as early as 41 Ma, with the gap depth uncertain also. Resolution of the tectonics-based uncertainties by additional survey being most probably both time-consuming and inconclusive, and the geological estimates being open to alternative interpretations, we define an optimal strategy for additional sampling and measurement, designed to resolve the time of onset more certainly, possibly also resolving between deep and shallow opening, and thereby constraining the ACC role. Sample sites would have to be close to likely final barriers, to avoid extraneous influence, and within modern zones of ACC influence, ideally would form a depth transect, and would have continuous, mixed terrigenous and biogenic sections. A wide range of carefully selected parameters would be measured at each.
    Description: Published
    Description: 2388–2398
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctic Circumpolar Current ; Palaeoclimate ; Drake Passage ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 29587, doi:10.1038/srep29587.
    Description: Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28–15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.
    Description: This work was supported by NSF grants EAR0601998, EAR0602355, AGS0402010, ATM0401908, ATM0214525, ATM0096232 and AGS1243125 and a Chevron Centennial Fellowship at the University of Texas at Austin awarded to T.M.S.
    Keywords: Climate-change ecology ; Palaeoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...