ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Series available for loan
    Series available for loan
    Washington, DC : United States Gov. Print. Off.
    Associated volumes
    Call number: SR 90.0002(1538-S)
    In: Professional paper
    Type of Medium: Series available for loan
    Pages: III, S-15 S.
    Series Statement: U.S. Geological Survey professional paper 1538-S
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Seismological Research Letters ; Year: 2008 ; Volume: 79 ; Issue: 6 ; Pages: 797-805
    Publication Date: 2018-02-09
    Keywords: ddc:550
    Language: English
    Type: http://purl.org/escidoc/metadata/ves/publication-types/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Seismological Research Letters ; Year: 2008 ; Volume: 79 ; Issue: 6 ; Pages: 797-805
    Publication Date: 2018-02-09
    Language: English
    Type: http://purl.org/escidoc/metadata/ves/publication-types/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-26
    Description: The sharp increase in seismicity over a broad region of central Oklahoma has raised concern regarding the source of the activity and its potential hazard to local communities and energy industry infrastructure. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma in order to record the evolving seismicity. In this study, we apply a multiple-event relocation method to produce a catalog of 3639 central Oklahoma earthquakes from late 2009 through 2014. Regional moment tensor (RMT) source parameters were determined for 195 of the largest and best recorded earthquakes. Combining RMT results with relocated seismicity enabled us to determine the length, depth, and style of faulting occurring on reactivated subsurface fault systems. Results show that the majority of earthquakes occur on near-vertical, optimally oriented (NE-SW and NW-SE), strike-slip faults in the shallow crystalline basement. These are necessary first-order observations required to assess the potential hazards of individual faults in Oklahoma.
    Type: http://purl.org/escidoc/metadata/ves/publication-types/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : In order to assess the effects. of silvicultural and drainage practices on water quality it is necessary to understand their impacts on hydrology. The hydrology of a 340 ha artificially drained forested watershed in eastern North Carolina was studied for a five-year period (1988–92). Effects of soils, beds and changes in vegetation on water table depth, evapotranspiration (ET) and drainage outflows were analyzed. Total annual outflows from the watershed varied from 29 percent of the rainfall during the driest year (1990) when mostly mature trees were present to as much as 53 percent during a year of normal rainfall (1992) after about a third of the trees were harvested. Annual ET from the watershed, calculated as the difference between annual rainfall and outflow, varied from 76 percent of the calculated potential ET for a dry year to as much as 99 percent for a wet year. Average estimated ET was 58 percent of rainfall for the five-year period. Flow rates per unit area were consistently higher from a smaller harvested block (Block B - 82 ha) of the watershed than from the watershed as a whole. This is likely due to time lags, as drainage water flows through the ditch-canal network in the watershed, and to timber harvesting of the smaller gaged block.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-26
    Description: Modern tectonic studies often use regional moment tensors (RMTs) to interpret the seismotectonic framework of an earthquake or earthquake sequence; however, despite extensive use, little existing work addresses RMT parameter uncertainty. Here, we quantify how network geometry and faulting style affect RMT sensitivity. We examine how data-model fits change with fault plane geometry (strike and dip) for varying station configurations. We calculate the relative data fit for incrementally varying geometries about a best-fitting solution, applying our workflow to real and synthetic seismograms for both real and hypothetical station distributions and earthquakes. Initially, we conduct purely observational tests, computing RMTs from synthetic seismograms for hypothetical earthquakes and a series of well-behaved network geometries. We then incorporate real data and station distributions from the International Maule Aftershock Deployment (IMAD), which recorded aftershocks of the 2010 M W 8.8 Maule earthquake, and a set of regional stations capturing the ongoing earthquake sequence in Oklahoma and southern Kansas. We consider RMTs computed under three scenarios: (1) real seismic records selected for high data quality; (2) synthetic seismic records with noise computed for the observed source-station pairings and (3) synthetic seismic records with noise computed for all possible station-source pairings. To assess RMT sensitivity for each test, we observe the ‘fit falloff’, which portrays how relative fit changes when strike or dip varies incrementally; we then derive the ranges of acceptable strikes and dips by identifying the span of solutions with relative fits larger than 90 per cent of the best fit. For the azimuthally incomplete IMAD network, Scenario 3 best constrains fault geometry, with average ranges of 45° and 31° for strike and dip, respectively. In Oklahoma, Scenario 3 best constrains fault dip with an average range of 46°; however, strike is best constrained by Scenario 1, with a range of 26°. We draw two main conclusions from this study. (1) Station distribution impacts our ability to constrain RMTs using waveform time-series; however, in some tectonic settings, faulting style also plays a significant role and (2) increasing station density and data quantity (both the number of stations and the number of individual channels) does not necessarily improve RMT constraint. These results may be useful when organizing future seismic deployments (e.g. by concentrating stations in alignment with anticipated nodal planes), and in computing RMTs, either by guiding a more rigorous data selection process for input data or informing variable weighting among the selected data (e.g. by eliminating the transverse component when strike-slip mechanisms are expected).
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-01
    Description: With the implementation of the USGS National Earthquake Information Center Prompt Assessment of Global Earthquakes for Response system (PAGER), rapid determination of earthquake moment magnitude is essential, especially for earthquakes that are felt within the contiguous United States. We report an implementation of moment tensor processing for application to broad, seismically active areas of North America. This effort focuses on the selection of regional crustal velocity models, codification of data quality tests, and the development of procedures for rapid computation of the seismic moment tensor. We systematically apply these techniques to earthquakes with reported magnitude greater than 3.5 in continental North America that are not associated with a tectonic plate boundary.Using the 0.02–0.10 Hz passband, we can usually determine, with few exceptions, moment tensor solutions for earthquakes with Mw as small as 3.7. The threshold is significantly influenced by the density of stations, the location of the earthquake relative to the seismic stations and, of course, the signal-to-noise ratio. With the existing permanent broadband stations in North America operated for rapid earthquake response, the seismic moment tensor of most earthquakes that are Mw 4 or larger can be routinely computed. As expected the nonuniform spatial pattern of these solutions reflects the seismicity pattern. However, the orientation of the direction of maximum compressive stress and the predominant style of faulting is spatially coherent across large regions of the continent.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Seismological Society of America (SSA)
    Publication Date: 2015-05-05
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-10-25
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-12
    Description: We provide a complete description of the characteristics of excitation and attenuation of the ground motion in the Lake Van region (eastern Turkey) using a data set that includes three-component seismograms from the 23 October 2011 M w  7.1 Van earthquake, as well as its aftershocks. Regional attenuation and source scaling are parameterized to describe the observed ground motions as a function of distance, frequency, and magnitude. Peak ground velocities are measured in selected narrow frequency bands from 0.25 to 12.5 Hz; observed peaks are regressed to define a piecewise linear regional attenuation function, a set of excitation terms, and a set of site response terms. Results are modeled through random vibration theory (see Cartwright and Longuet-Higgins, 1956 ). In the log–log space, the regional crustal attenuation is modeled with a bilinear geometrical spreading characterized by a crossover distance at 40 km: fits our results at short distances ( r 〈40 km), whereas is better at larger distances (40〈 r 〈200 km). A frequency-dependent quality factor, Q ( f )=100( f / f ref ) 0.43 (in which f ref =1.0 Hz), is coupled to the geometrical spreading. Because of the inherent trade-off of the excitation/attenuation parameters ( and ), their specific values strongly depend on the choice made for the stress drop of the smaller earthquakes. After choosing a Brune stress drop Brune =4 MPa at M w =3.5, we were able to define (1) an effective high frequency, distance- and magnitude-independent roll-off spectral parameter, eff =0.03 s and (2) a size-dependent stress-drop parameter, which increases with moment magnitude, from Brune =4 MPa at M w  3.5 to Brune =20 MPa at M w  7.1. The set of parameters mentioned here may be used in order to predict the earthquake-induced ground motions expected from future earthquakes in the region surrounding Lake Van.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...