ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Human presence in space, whether permanent or temporary, is accompanied by the presence of microbes. However, the extent of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is unclear. Previous studies have indicated that spaceflight weakens the immune system in humans and animals. In addition, preflight and in-flight monitoring of the International Space Station (ISS) and other spacecraft indicates the presence of opportunistic pathogens and the potential of obligate pathogens. Altered antibiotic resistance of microbes in flight has also been shown. As astronauts and cosmonauts live for longer periods in a closed environment, especially one using recycled water and air, there is an increased risk to crewmembers of infectious disease events occurring in-flight. Therefore, understanding how the space environment affects microorganisms and their disease potential is critically important for spaceflight missions and requires further study. The goal of this flight experiment, operationally called MICROBE, is to utilize three model microbial pathogens, Salmonella typhimurium, Pseudomonas aeruginosa, and Candida albicans to examine the global effects of spaceflight on microbial gene expression and virulence attributes. Specifically, the aims are (1) to perform microarray-mediated gene expression profiling of S. typhimurium, P. aeruginosa, and C. albicans, in response to spaceflight in comparison to ground controls and (2) to determine the effect of spaceflight on the virulence potential of these microorganisms immediately following their return from spaceflight using murine models. The model microorganisms were selected as they have been isolated from preflight or in-flight monitoring, represent different degrees of pathogenic behavior, are well characterized, and have sequenced genomes with available microarrays. In particular, extensive studies of S. typhimurium by the Principal Investigator, Dr. Nickerson, using ground-based analog systems demonstrate important changes in the genotypic, phenotypic, and virulence characteristics of this pathogen resulting from exposure to a flight-like environment (i.e. modeled microgravity).
    Keywords: Aerospace Medicine
    Type: NASA HRP Investigators'' Workshop; Feb 12, 2007 - Feb 14, 2007; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The high inclination orbit for the International Space Station poses a risk to astronauts on EVA during occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. We are currently unable to predict these events within the few-hour lead time required for evasive action. Compounding the threat is the fact that station construction occurs during increasing solar activity and through the peak of the solar cycle. In this paper we present an overview of the risk, the current methods to provide forecasts of SPEs, and potential risk mitigation options.
    Keywords: Aerospace Medicine
    Type: Acta astronautica (ISSN 0094-5765); Volume 42; 1-8; 107-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-02
    Description: As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.
    Keywords: Aerospace Medicine
    Type: Extended Duration Orbiter Medical Project; 2-1 - 2-10; NASA/SP-1999-534
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-33667 , IAA Humans in Space Symposium; Jun 29, 2015 - Jul 03, 2015; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The goal of this project was to examine the effects of artificial gravity (2.5 g) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) control (C) group (N=7); and 2) an AG group (N=8), which was exposed to 21 days of bed-rest plus daily 1 hr exposures to AG (2.5 g). This particular experiment was part of an integrated AG Pilot Project sponsored by NASA/Johnson Space Center. The in vivo torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre and post treatment. Also, pre- and post treatment biopsy samples were obtained from both the vastus lateralis and soleus muscles and were used, in part, for a series of analyses on gene expression (mRNA abundance) of key factors implicated in the anabolic versus catabolic state of the muscle. Post/Pre toque-velocity determinations revealed greater decrements in knee extensor performance in the C versus AG group (P less than 0.04). The plantar flexor muscle group of the AG subjects actually demonstrated a net gain in torque-velocity relationship; whereas, in the C group the overall post/pre responses declined (AG vs C; P less than 0.001). Measurements of muscle fiber cross-sectional area (for both muscles) demonstrated a loss of approx. 20% in the C group while no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity (IGF-1, IGF-1 BP4, mechano growth factor, total RNA, and pro-collagen 3a) were higher in the AG group, whereas catabolic markers (myostatin and atrogen) were elevated in the C group. Importantly, these patterns were seen in both muscles. Based on these observations we conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading states. These findings also warrant further studies since it is likely that other robust paradigms of AG that employ various exercise strategies may be more effective in counteracting long duration unloading states as anticipated on the platforms of the Moon and Mars.
    Keywords: Aerospace Medicine
    Type: 28th Annual International Gravitational Physiology Meeting; Apr 08, 2007 - Apr 13, 2007; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: From dealing with the inherent uncertainties in outcomes of scientific research to the lack of applicability of current NASA Procedural Requirements guidance documentation, research-based projects present challenges that require unique application of classical project management techniques. If additionally challenged by the creation of a new program transitioning from basic to applied research in a technical environment often unfamiliar with the cost and schedule constraints addressed by project management practices, such projects can find themselves struggling throughout their life cycles. Finally, supplying deliverables to a prime vehicle customer, also in the formative stage, adds further complexity to the development and management of research-based projects. The Biomedical Research and Countermeasures Projects Branch at NASA Johnson Space Center encompasses several diverse applied research-based or research-enabling projects within the newly-formed Human Research Program. This presentation will provide a brief overview of the organizational structure and environment in which these projects operate and how the projects coordinate to address and manage technical requirements. We will identify several of the challenges (cost, technical, schedule, and personnel) encountered by projects across the Branch, present case reports of actions taken and techniques implemented to deal with these challenges, and then close the session with an open forum discussion of remaining challenges and potential mitigations.
    Keywords: Aerospace Medicine
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: JSC researchers study carcinogenesis, cancer prevention and treatment along with epidemiological (primarily retrospective and longitudinal) studies, modeling, and interactions with the environment such as radiation, nutritional, and endocrine changes related to space flight along with behaviors such as smoking. Cancer research is a major focus for human space flight due to the exposure to space radiation which consists of particles of varying charges and energies, and secondary neutrons. The JSC laboratories collaborate with investigators from the U.S. as well as our European and Japanese partners. We use accelerator facilities at the Brookhaven National Laboratory, Loma Linda University and Los Alamos National Laboratory that generate high energy charged particles and neutrons to simulate cosmic radiation and solar particle events. The research using cultured cells and animals concentrates on damage and repair from the level of DNA to organ tissues, due to exposure to simulated space radiation exposure, that contribute to the induction of leukemia and solid tumors in most major tissues such as lung, colon, liver and breast. The goal of the research is to develop a mathematical model that can predict cancer morbidity and mortality risks with sufficient accuracy for a given space mission.
    Keywords: Aerospace Medicine
    Type: JSC-CN-24667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Compared to experiments utilizing humans in microgravity, cell-based approaches to questions about subsystems of the human system afford multiple advantages, such as crew safety and the ability to achieve statistical significance. To maximize the science return from flight samples, an optimized method was developed to recover protein from samples depleted of nucleic acid. This technique allows multiple analyses on a single cellular sample and when applied to future cellular investigations could accelerate solutions to significant biomedical barriers to human space exploration. Cell cultures grown in American Fluoroseal bags were treated with an RNA stabilizing agent (RNAlater - Ambion), which enabled both RNA and immunoreactive protein analyses. RNA was purified using an RNAqueous(registered TradeMark) kit (Ambion) and the remaining RNA free supernatant was precipitated with 5% trichloroacetic acid. The precipitate was dissolved in SDS running buffer and tested for protein content using a bicinchoninic acid assay (1) (Sigma). Equal loads of protein were placed on SDS-PAGE gels and either stained with CyproOrange (Amersham) or transferred using Western Blotting techniques (2,3,4). Protein recovered from RNAlater-treated cells and stained with protein stain, was measured using Imagequant volume measurements for rectangles of equal size. BSA treated in this way gave quantitative data over the protein range used (Fig 1). Human renal cortical epithelial (HRCE) cells (5,6,7) grown onboard the International Space Station (ISS) during Increment 3 and in ground control cultures exhibited similar immunoreactivity profiles for antibodies to the Vitamin D receptor (VDR) (Fig 2), the beta isoform of protein kinase C (PKC ) (Fig 3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Fig 4). Parallel immunohistochemical studies on formalin-fixed flight and ground control cultures also showed positive immunostaining for VDR and other biomarkers (Fig 5). These results are consistent with data from additional antigenic recovery experiments performed on human Mullerian tumor cells cultured in microgravity (8).
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This proposal seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the sensor/actuators. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as the exposure to radiation or infectious agents. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), magnetic particles and metals, and imaging agents. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. These molecules would also be able to administer therapeutics in response to the needs of the astronaut, and act as actuators to remotely manipulate an astronaut as necessary to ensure their safety. The reporting will be accomplished either through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation, or through functional MRI. These nanosensors coupled to NEMS devices could facilitate the success and increase the safety of extended space flight.
    Keywords: Aerospace Medicine
    Type: NAS2-02069-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.
    Keywords: Aerospace Medicine
    Type: Microgravity science and technology (ISSN 0938-0108); 15; 4; 39-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...