ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 21
    Publication Date: 2011-06-28
    Description: A novel limb scanning mini-DOAS spectrometer for the detection of UV/vis absorbing radicals (e.g., O3, BrO, IO, HONO) was deployed on the DLR-Falcon (Deutsches Zentrum für Luft- und Raumfahrt) aircraft and tested during the ASTAR 2007 campaign (Arctic Study of Tropospheric Aerosol, Clouds and Radiation) that took place at Svalbard (78° N) in spring 2007. Our main objectives during this campaign were to test the instrument, and to perform spectral and profile retrievals of tropospheric trace gases, with particular interest on investigating the distribution of halogen compounds (e.g., BrO) during the so-called ozone depletion events (ODEs). In the present work, a new method for the retrieval of vertical profiles of tropospheric trace gases from tropospheric DOAS limb observations is presented. Major challenges arise from modeling the radiative transfer in an aerosol and cloud particle loaded atmosphere, and from overcoming the lack of a priori knowledge of the targeted trace gas vertical distribution (e.g., unknown tropospheric BrO vertical distribution). Here, those challenges are tackled by a mathematical inversion of tropospheric trace gas profiles using a regularization approach constrained by a retrieved vertical profile of the aerosols extinction coefficient EM. The validity and limitations of the algorithm are tested with in situ measured EM, and with an absorber of known vertical profile (O4). The method is then used for retrieving vertical profiles of tropospheric BrO. Results indicate that, for aircraft ascent/descent observations, the limit for the BrO detection is roughly 1.5 pptv (pmol mol−1), and the BrO profiles inferred from the boundary layer up to the upper troposphere and lower stratosphere have around 10 degrees of freedom. For the ASTAR 2007 deployments during ODEs, the retrieved BrO vertical profiles consistently indicate high BrO mixing ratios (∼15 pptv) within the boundary layer, low BrO mixing ratios (≤1.5 pptv) in the free troposphere, occasionally enhanced BrO mixing ratios (∼1.5 pptv) in the upper troposphere, and increasing BrO mixing ratios with altitude in the lowermost stratosphere. These findings agree reasonably well with satellite and balloon-borne soundings of total and partial BrO atmospheric column densities.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2012-11-16
    Description: During polar spring, halogen radicals like bromine monoxide (BrO) play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2). Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The presented algorithm furthermore allows to estimate a realistic measurement error of the tropospheric BrO column. The sensitivity of each satellite pixel to BrO in the boundary layer is quantified using the measured UV radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement with ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary layer meteorology influences the vertical distribution.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-01-27
    Description: The chemistry of the troposphere and specifically the global tropospheric ozone budget is affected by reactive halogen species such as bromine monoxide (BrO) or chlorine monoxide (ClO). Especially BrO plays an important role in the processes of ozone destruction, disturbance of NOx and HOx chemistry, oxidation of dimethyl sulfide (DMS), and the deposition of elementary mercury. In the troposphere BrO has been detected in polar regions, at salt lakes, in volcanic plumes, and in the marine boundary layer. For a better understanding of these processes, field measurements as well as reaction chamber studies are performed. In both cases instruments with high spatial resolution and high sensitivity are necessary. A Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) instrument with an open path measurement cell was designed and applied. For the first time, a CE-DOAS instrument is presented using an UV LED in the 325–365 nm wavelength range. In laboratory studies, BrO as well as HONO, HCHO, O3, and O4 could be reliably determined at detection limits of 20 ppt for BrO, 9.1 ppb for HCHO, 970 ppt for HONO, and 91 ppb for O3, for five minutes integration time. The best detection limits were achieved for BrO (11 ppt), HCHO (5.1 ppb), HONO (490 ppt), and O3 (59 ppb) for integration times of 81 minutes or less. Comparison with established White system (WS) DOAS and O3 monitor measurements demonstrate the reliability of the instrument.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-04-15
    Description: The role of halogen species (e.g., Br, Cl) in the troposphere of polar regions has been investigated since the discovery of their importance for boundary layer ozone destruction in the polar spring about 25 years ago. Halogen species take part in an auto-catalytic chemical reaction cycle, which releases Br2 and BrCl from the sea salt aerosols, fresh sea ice or snowpack, leading to ozone depletion. In this study, three different chemical reaction schemes are investigated: a bromine-only reaction scheme, which then is subsequently extended to include nitrogen-containing compounds and chlorine species and corresponding chemical reactions. The importance of specific reactions and their rate constants is identified by a sensitivity analysis. The heterogeneous reaction rates are parameterized by considering the aerodynamic resistance, a reactive surface ratio, β, i.e., the ratio of reactive surface area to total ground surface area, and the boundary layer height, Lmix. It is found that for β = 1, a substantial ozone decrease occurs after five days and ozone depletion lasts for 40 h for Lmix = 200 m. For about β ≥ 20, the time required for major ozone depletion ([O3] 〈 4 ppb) to occur becomes independent of the height of the boundary layer, and for β = 100 it approaches two days, 28 h of which are attributable to the induction and 20 h to the depletion time. In polar regions, a small amount of NOx may exist, which stems from nitrate contained in the snow, and may have a strong impact on the ozone depletion. Therefore, the role of nitrogen-containing species on the ozone depletion rate is studied. The results show that the NOx concentrations are influenced by different chemical reactions over different time periods. During ozone depletion, the reaction cycle involving the BrONO2 hydrolysis is dominant. A critical value of 0.0004 of the uptake coefficient of the BrONO2 hydrolysis reaction at the aerosol and saline surfaces is identified, beyond which the existence of NOx species accelerates the ozone depletion event, whereas for lower values, deceleration occurs.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2012-06-13
    Description: Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and instrumental features. The technique is demonstrated using the examples of a theoretical study of BrO retrievals for stratospheric BrO measurements and for BrO measurements in volcanic plumes. However, due to the general nature of the tool, it is applicable to any type (active or passive) of DOAS retrieval.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2012-04-26
    Description: The chemistry of the troposphere and specifically the global tropospheric ozone budget is affected by reactive halogen compounds like BrO or ClO. Bromine monoxide (BrO) plays an important role in the processes of ozone destruction, disturbance of NOx and HOx chemistry, oxidation of DMS, and the deposition of elementary mercury. In the troposphere BrO has been detected in polar regions, at salt lakes, in volcanic plumes, and in the marine boundary layer. For a better understanding of these processes instruments with high spatial resolution and high sensitivity are necessary. A Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) instrument was designed and applied. For the first time, such an instrument uses an UV-LED in the UV-wavelength range (325–365 nm) to identify BrO. In laboratory studies at the Atmospheric Chemistry Research Laboratory, University of Bayreuth, Germany, BrO, as well as HONO, HCHO, O3, and O4, could be reliable determined at detection limits (for five minutes integration time) of 20 ppt for BrO, 9.1 ppb for HCHO, 970 ppt for HONO, and 91 ppb for O3, respectively. The best detection limits for BrO (11 ppt), HCHO (5.1 ppb), HONO (490 ppt), and O3 (59 ppb) were achieved for integration times of 81 min or less.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2012-05-03
    Description: During polar spring, halogen radicals like bromine monoxide (BrO) play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO-distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2). Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The sensitivity of each satellite pixel to BrO in the boundary-layer is quantified using the measured UV-radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement to ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both, elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary-layer meteorology influences the vertical distribution.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-03-07
    Description: Many relevant processes in tropospheric chemistry take place on rather small scales (e.g. tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established DOAS method. The Heidelberg Airborne Imaging Differential Optical Absorption Spectrometer Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we report a technical description of the instrument including its custom build spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BROMEX campaign, which was performed 2012 in Barrow (Alaska, USA).
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-07-02
    Description: The chemistry of the troposphere and specifically the global tropospheric ozone budget is affected by reactive halogen species like Bromine monoxide (BrO) or Chlorine monoxide (ClO). Especially BrO plays an important role in the processes of ozone destruction, disturbance of NOx and HOx chemistry, oxidation of DMS, and the deposition of elementary mercury. In the troposphere BrO has been detected in polar regions, at salt lakes, in volcanic plumes, and in the marine boundary layer. For a better understanding of these processes field measurements as well as reaction-chamber studies are performed. In both cases instruments with high spatial resolution and high sensitivity are necessary. A Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) instrument with an open path measurement cell was designed and applied. For the first time, a CE-DOAS instrument is presented using an UV-LED in the 325–365 nm wavelength range. In laboratory studies, BrO as well as HONO, HCHO, O3, and O4, could be reliable determined at detection limits of 20 ppt for BrO, 9.1 ppb for HCHO, 970 ppt for HONO, and 91 ppb for O3, for five minutes integration time, respectively. The best detection limits were achieved for BrO (11 ppt), HCHO (5.1 ppb), HONO (490 ppt), and O3 (59 ppb) for integration times of 81 min or less. Comparison with established White-System DOAS and O3 monitor demonstrate the reliability of the instrument.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-04-12
    Description: We present a new algorithm for satellite retrievals of the atmospheric water vapor column in the blue spectral range. The water vapor absorption cross section in the blue spectral range is much weaker than in the red spectral range. Thus the detection limit and the uncertainty of individual observations is systematically larger than for retrievals at longer wavelengths. Nevertheless, water vapor retrievals in the blue spectral range have also several advantages: since the surface albedo in the blue spectral range is similar over land and ocean, water vapor retrievals are more consistent than for longer wavelengths. Compared to retrievals at longer wavelengths, over ocean the sensitivity for atmospheric layers close to the surface is higher due to the (typically 2 to 3 times) higher ocean albedo in the blue. Water vapor retrievals in the blue spectral range are also possible for satellite sensors, which do not measure at longer wavelengths of the visible spectral range like the Ozone Monitoring instrument (OMI). We investigated details of the water vapor retrieval in the blue spectral range based on radiative transfer simulations and observations from the Global Ozone Monitoring Experiment 2 (GOME-2) and OMI. It is demonstrated that it is possible to retrieve the atmospheric water vapor column density in the blue spectral range over most parts of the globe. The findings of our study are of importance also for future satellite missions like e.g. Sentinel 4 and 5.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...