ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-13
    Description: We present the X-ray timing and spectral evolution of the Galactic Center magnetar SGR J1745-2900 (SGR*) for the first 4 months post-discovery using data obtained with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift observatories. Our timing analysis reveals a large increase in the magnetar spin-down rate by a factor of 2.6 plus or minus 0.07 over our data span. We further show that the change in spin evolution was likely coincident with a bright X-ray burst observed in 2013 June by Swift, and if so, there was no accompanying discontinuity in the frequency. We find that the source 3 to 10 kiloelectronvolt flux has declined monotonically by a factor of approximately 2 over an 80-day period post-outburst accompanied by an approximately 20 percent decrease in the source's blackbody temperature, although there is evidence for both flux and kiloteslas having leveled off. We argue that the torque variations are likely to be magnetospheric in nature and will dominate over any dynamical signatures of orbital motion around Sgr A*.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN21642 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 786; 2; 84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggest that an additional component, such as a power law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN21706 , The Astrophysical Journal; 789; 1; 75
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-26
    Description: We present results from the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN40992 , The Astrophysical Journal; 836; 1; 20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-03-29
    Description: The CERN Axion Solar Telescope (CAST) is searching for solar axions, which could be produced in the core of the Sun via the so-called Primakoff effect. For this purpose, CAST uses a decommissioned LHC prototype magnet. In its magnetic field of 9 Tesla axions could be reconverted into X-ray photons. The magnet is mounted on a structure built to follow the Sun during sunrise and sunset for a total of about 3 hours per day. The analysis of the data acquired during the first phase of the experiment with vacuum in the magnetic field region yielded the best experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV. In order to extend the sensitivity of the experiment to a wider mass range, the CAST experiment continued its search for axions with helium in the magnet bores. In this way it is possible to restore coherence for larger masses. Changing the pressure of the helium gas enables the experiment to scan different axion masses. In the first part of this second phase of CAST, helium-4 has been used and the axion mass region was extended up to 0.4 eV ...
    Description: thesis
    Keywords: 523 ; TII 100 ; TCE 380 ; Dunkle Materie {Astronomie: Interstellare Materie} ; CCD, Photodetektoren {Astronomische Instrumente}
    Language: English
    Type: monograph , publishedVersion
    Format: 266 S.
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...