ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2018-11-22
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-11-22
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  [Talk] In: ESASTAP workshop - Current status and key requirements for numerical models of the Agulhas Current, 22.-23.10.2018, Cape Town, South Africa .
    Publication Date: 2018-11-22
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  [Talk] In: Company HELZEL, 30.10.2018, Kaltenkirchen, Germany .
    Publication Date: 2018-11-22
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    GEOMAR
    In:  [Software]
    Publication Date: 2021-11-09
    Description: With this script, the Meridional Overturning Circulation (MOC) can be computed from NEMO ocean-model output for the whole globe or the Atlantic (AMOC), Indic (IMOC) and Pacific (PMOC) subbasins. The MOC is computable in z- and sigma coordinates. Moreover, for nested configurations, it is possible to combine data from both host and nest grids. Finally, it is possible to take into account of that the ORCA model grid is curvilinear north of 20°N: it is possible to compute the northward velocity component from the velocity field in x- and y- directions and to sum up the meridional flux over latitudional bands instead of in x-direction. When both steps are applied, the resulting MOC shows however strong variability in meridional direction. It needs to be clarified, whether this is realistic or not. The software is provided in the form of the jupyter notebook "MOC.ipynb" which includes more informations on the possibilites of the computations and an extensive appendix section with comparisons to computations with cdftools, as well as with details on the computation of the MOC including nest data and taking the curvilinearity of the grid into account. Necessary python modules are listed at the beginning of the document.
    Type: Software , NonPeerReviewed
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Advances in Modeling Earth Systems, 11 (8). pp. 2745-2767.
    Publication Date: 2022-01-31
    Description: Mesoscale dynamics of the Agulhas Current system determine the exchange between the Indian and Atlantic oceans, thereby influencing the global overturning circulation. Using a series of ocean model experiments compared to observations, we show that the representation of mesoscale eddies in the Agulhas ring path improves with increasing resolution of submesoscale flows. Simulated submesoscale dynamics are validated with time‐mean horizontal‐wavenumber spectra from satellite sea surface temperature measurements and mesoscale dynamics with spectra from sea surface height. While the Agulhas ring path in a nonsubmesoscale‐resolving (1/20)° configuration is associated with too less power spectral densities on all scales and too steep spectral slopes, the representation of the mesoscale dynamics improves when the diffusion and the dissipation of the model are reduced and some small‐scale features are resolved. Realistic power spectral densities over all scales are achieved when additionally the horizontal resolution is increased to (1/60)° and a larger portion of the submesoscale spectrum is resolved. Results of an eddy detection algorithm applied to the model outputs as well as to a gridded sea surface height satellite product show that in particular strong cyclones are much better represented when submesoscale flows are resolved by the model. The validation of the submesoscale dynamics with sea surface temperature spectra provides guidance for the choice of advection schemes and explicit diffusion and dissipation as well as for further subgrid‐scale parameterizations. For the Agulhas ring path, the use of upstream biased advection schemes without explicit diffusion and dissipation is found to be associated with realistically simulated submesoscales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-04-06
    Description: The Agulhas Current, the western boundary current of the South Indian Ocean, has been shown to play an important role in the connectivity between the Indian and Atlantic oceans. The greater Agulhas Current system is highly dominated by mesoscale dynamics. To investigate their influence on the regional and global circulations, a family of high-resolution ocean general circulation model configurations based on the NEMO code has been developed. Horizontal resolution refinement is achieved by embedding “nests” covering the South Atlantic and the western Indian oceans at 1/10∘ (INALT10) and 1/20∘ (INALT20) within global hosts with coarser resolutions. Nests and hosts are connected through two-way interaction, allowing the nests not only to receive boundary conditions from their respective host but also to feed back the impact of regional dynamics onto the global ocean. A double-nested configuration at 1/60∘ resolution (INALT60) has been developed to gain insights into submesoscale processes within the Agulhas Current system. Large-scale measures such as the Drake Passage transport and the strength of the Atlantic meridional overturning circulation are rather robust among the different configurations, indicating the important role of the hosts in providing a consistent embedment of the regionally refined grids into the global circulation. The dynamics of the Agulhas Current system strongly depend on the representation of mesoscale processes. Both the southward-flowing Agulhas Current and the northward-flowing Agulhas Undercurrent increase in strength with increasing resolution towards more realistic values, which suggests the importance of improving mesoscale dynamics as well as bathymetric slopes along this narrow western boundary current regime. The exploration of numerical choices such as lateral boundary conditions and details of the implementation of surface wind stress forcing demonstrates the range of solutions within any given configuration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-09-20
    Description: Marine scientists investigate the movement of oceanic water particles with floating measurement devices released in the real ocean, as well as with virtual particles released in numerical model simulations. The detection, visualization, and evolution of clustered particles is key for gaining a comprehensive understanding of the underlying processes in the oceans. Thereby, vast amounts of mobility data (3D coordinates of these particles over time) need to be analyzed using mobility data science methods. In this paper, we describe the application of data science techniques to detect particle clusters and, more importantly, to track the evolution of these clusters over time in order to support the analysis of oceanic flows. In particular, we apply a well-known concept for tracking the cluster evolution from the data mining community that relies on pair-counting and, thus, is rather inefficient. In order to be applicable to large amounts of particles, we further elaborate two heuristic solutions to compute the cluster transitions based on spatial approximations. Experiments on real world data show a considerable speed-up while sacrificing marginal accuracy drops. Our prototype is used by domain experts for the analysis of the large-scale ocean by virtual particle release experiments in ocean simulations.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-02-08
    Description: Mesoscale eddies are central to the oceanic circulation and the global climate. Of particular importance, in this respect, are mesoscale eddies in the Agulhas region south of Africa, as they govern the inflow of warm and salty Indian Ocean waters into the Atlantic Ocean. In this dissertation, it is shown that these eddies are strengthened by submesoscale flows. This highlights the importance of including submesoscale effects for a realistic representation of the mesoscale dynamics in ocean models. First, a general circulation ocean model for the Agulhas region is improved with respect to the simulation of submesoscale dynamics by increasing the vertical and horizontal resolution and reducing the model diffusion and dissipation. Second, a model validation based on horizontal-wavenumber spectra computed from high-resolution satellite sea-surface temperature and sea-surface height measurements is performed. It demonstrates that the simulated submesoscale and mesoscale circulation in the Cape Basin are extraordinary well represented in this model. A comparison to two parallel model experiments, of which the first only resolves the largest and the second no submesoscale flows, reveals that the mesoscale spectral density of sea-surface height increases the more submesoscales are resolved. The results of an eddy detection algorithm show that this can be attributed to a strengthening of the mesoscale eddies. Third, a coarse-graining approach for the transfer of kinetic energy between spatial scales is applied to the model outputs. The results indicate that the mesoscale eddies are strengthened in spring or early summer by the absorption of submesoscale eddies resulting from baroclinic mixed-layer instability in winter. Fourth, this analysis complemented with the computation of the transfer of kinetic energy between temporal scales reveals that submesoscale eddies emerging from barotropic instabilities at the northern boundary of the Agulhas Current are important for the strength of shear-edge eddies and further of lee cyclones that propagate into the Cape Basin. The model comparison shows that the combination of both strengthening effects contributes to an increase of the surface mesoscale kinetic energy in the Cape Basin by 28 %, if submesoscale processes are resolved.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-02-08
    Description: Mesoscale eddies can be strengthened by the absorption of submesoscale eddies resulting from mixed-layer baroclinic instabilities. This is shown for mesoscale eddies in the Agulhas Current system by investigating the kinetic energy cascade with a spectral and a coarse-graining approach in two model simulations of the Agulhas region. One simulation resolves mixed-layer baroclinic instabilities and one does not. When mixed-layer baroclinic instabilities are included, the largest submesoscale near-surface fluxes occur in winter-time in regions of strong mesoscale activity for upscale as well as downscale directions. The forward cascade at the smallest resolved scales occurs mainly in frontogenetic regions in the upper 30 m of the water column. In the Agulhas ring path, the forward cascade changes to an inverse cascade at a typical scale of mixed-layer eddies (15 km). At the same scale, the largest sources of the upscale flux occur. After the winter, the maximum of the upscale flux shifts to larger scales. Depending on the region, the kinetic energy reaches the mesoscales in spring or early summer aligned with the maximum of mesoscale kinetic energy. This indicates the importance of submesoscale flows for the mesoscale seasonal cycle. A case study shows that the underlying process is the mesoscale absorption of mixed-layer eddies. When mixed-layer baroclinic instabilities are not included in the simulation, the open-ocean upscale cascade in the Agulhas ring path is almost absent. This contributes to a 20 %-reduction of surface kinetic energy at mesoscales larger than 100 km when submesoscale dynamics are not resolved by the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...