ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2018-11-14
    Description: Large uncertainties still dominate the hypothesis of an abrupt large-scale shift of the Amazon forest caused by climate change [Amazonian forest dieback (AFD)] even though observational evidence shows the forest and regional climate changing. Here, we assess whether mitigation or adaptation action should be taken now, later, or not at...
    Keywords: Sustainability Science
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-08-21
    Description: The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reichstein, Markus -- Bahn, Michael -- Ciais, Philippe -- Frank, Dorothea -- Mahecha, Miguel D -- Seneviratne, Sonia I -- Zscheischler, Jakob -- Beer, Christian -- Buchmann, Nina -- Frank, David C -- Papale, Dario -- Rammig, Anja -- Smith, Pete -- Thonicke, Kirsten -- van der Velde, Marijn -- Vicca, Sara -- Walz, Ariane -- Wattenbach, Martin -- England -- Nature. 2013 Aug 15;500(7462):287-95. doi: 10.1038/nature12350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. markus.reichstein@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955228" target="_blank"〉PubMed〈/a〉
    Keywords: *Carbon Cycle ; *Climate Change ; *Ecosystem ; Plants/metabolism ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rammig, Anja -- Mahecha, Miguel D -- England -- Nature. 2015 Nov 19;527(7578):315-6. doi: 10.1038/527315a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉TUM School of Life Sciences Weihenstephan, Technische Universitat Munchen, 85354 Freising, Germany. ; Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26581288" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-05-01
    Description: Precise descriptions of forest productivity, biomass, and structure are essential for understanding ecosystem responses to climatic and anthropogenic changes. However, relations between these components are complex, in particular for tropical forests. We developed an approach to simulate carbon dynamics in the Amazon rainforest including around 410 billion individual trees within 7.8 million km 2 . We integrated canopy height observations from space-borne LIDAR in order to quantify spatial variations in forest state and structure reflecting small-scale to large-scale natural and anthropogenic disturbances. Under current conditions, we identified the Amazon rainforest as a carbon sink, gaining 0.56 GtC per year. This carbon sink is driven by an estimated mean gross primary productivity (GPP) of 25.1 tC ha −1  a −1 , and a mean woody aboveground net primary productivity (wANPP) of 4.2 tC ha −1  a −1 . We found that success...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-06-10
    Description: Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios we show that deforestation can reduce dry-season rainfall by up to 20% far from the deforested area, namely over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot-spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-07-08
    Description: Climate extremes have the potential to cause extreme responses of terrestrial ecosystem functioning. However, it is neither straightforward to quantify and predict extreme ecosystem responses, nor to attribute these responses to specific climate drivers. Here, we construct a factorial experiment based on a large ensemble of process-oriented ecosystem model simulations driven by a regional climate model (12 500 model years in 1985–2010) in six European regions. Our aims are to (1) attribute changes in the intensity and frequency of simulated ecosystem productivity extremes (EPEs) to recent changes in climate extremes, CO 2 concentration, and land use, and to (2) assess the effect of timing and seasonal interaction on the intensity of EPEs. Evaluating the ensemble simulations reveals that (1) recent trends in EPEs are seasonally contrasting: spring EPEs show consistent trends towards increased carbon uptake, while trends in summer EPEs are predominantly negative in net e...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019
    Description: Abstract Defining and quantifying drought is essential when studying ecosystem responses to such events. Yet, many studies lack either a clear definition of drought, and/or erroneously assume drought under conditions within the range of “normal climatic variability” (c.f. Slette et al., 2019). To improve the general characterization of drought conditions in ecological studies, Slette et al. (2019) propose that drought studies should consistently relate to the local climatic context, assessing whether reported drought periods actually constitute extremes in water availability. While we generally agree with their proposal, we argue that standardised climatic indices, such as the Standardized Precipitation and Evapotranspiration Index SPEI (Sergio M Vicente‐Serrano, Beguería, & López‐Moreno, 2010) as highlighted in Slette et al., cannot be recommended as stand‐alone criteria for drought severity, especially when applied in a global context. We base our critique on three major points: (1) standardisation can lead to a misrepresentation of actual water supply, especially for moist climates, (2) standardised values are not directly comparable between different reference periods, (3) spatially coarsely resolved data sources are unlikely to represent site‐level water supply. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: Tropical vegetation biomass represents a key component of the carbon stored in global forest ecosystems. Estimates of aboveground biomass commonly rely on measurements of tree size (diameter and height) and then indirectly relate, via allometric relationships and wood density, to biomass sampled from a relatively small number of harvested and weighed trees. Recently, however, novel in situ remote sensing techniques have been proposed, which may provide nondestructive alternative approaches to derive biomass estimates. Nonetheless, we still lack knowledge of the measurement uncertainties, as both the calibration and validation of estimates using different techniques and instruments requires consistent assessment of the underlying errors. To that end, we investigate different approaches estimating the tropical aboveground biomass in situ. We quantify the total and systematic errors among measurements obtained from terrestrial light detection and ranging (LiDAR), hypsometer-based trigonometry, and traditional forest inventory. We show that laser-based estimates of aboveground biomass are in good agreement (〈10% measurement uncertainty) with traditional measurements. However, relative uncertainties vary among the allometric equations based on the vegetation parameters used for parameterization. We report the error metrics for measurements of tree diameter and tree height and discuss the consequences for estimated biomass. Despite methodological differences detected in this study, we conclude that laser-based electronic devices could complement conventional measurement techniques, thereby potentially improving estimates of tropical vegetation biomass.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-03-08
    Description: Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition, and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here we review literature on carbon-cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Though processes and sensitivities differ among biomes, based on expert opinion we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to re-gain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs . ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-04-08
    Description: Amazonian ecosystems are major biodiversity hotspots and carbon sinks that may lose species to extinction and become carbon sources due to extreme dry or warm conditions. We investigated the seasonal patterns of high-resolution solar-induced chlorophyll fluorescence (SIF) measured by the satellite Orbiting Carbon Observatory-2 (OCO-2) across the Amazonian ecoregions to assess the area´s phenology and extreme drought vulnerability. SIF is an indicator of the photosynthetic activity of chlorophyll molecules and is assumed to be directly related to gross primary production (GPP). We analyzed SIF variability in the Amazon basin during the period between September 2014 and December 2018. In particular, we focused on the SIF drought response under the extreme drought period during the strong El Niño in 2015–2016, as well as the 6-month drought peak period. During the drought´s peak months, the SIF decreased and increased with different intensities across the ecoregions of the Amazonian moist broadleaf forest (MBF) biome. Under a high temperature, a high vapor pressure deficit, and extreme drought conditions, the SIF presented differences from −31.1% to +17.6%. Such chlorophyll activity variations have been observed in plant-level measurements of active fluorescence in plants undergoing physiological responses to water or heat stress. Thus, it is plausible that the SIF variations in the ecoregions’ ecosystems occurred as a result of water and heat stress, and arguably because of drought-driven vegetation mortality and collateral effects in their species composition and community structures. The SIF responses to drought at the ecoregional scale indicate that there are different levels of resilience to drought across MBF ecosystems that the currently used climate- and biome-region scales do not capture. Finally, we identified monthly SIF values of 32 ecoregions, including non-MBF biomes, which may give the first insights into the photosynthetic activity dynamics of Amazonian ecoregions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...