ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2011-08-24
    Description: Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.
    Keywords: PROPELLANTS AND FUELS
    Type: Combustion Science and Technology (ISSN 0010-2202); p. 233-249.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Foutch and T'ien used the radiative loss as well as a densimetric Froude number to characterize the blowoff (small Da) and quenching extinction (large Da) boundaries in stagnation-point diffusion flames under various convective conditions. An important conclusion of this study was that the shape and location of the extinction boundary, as well as a number of important flame characteristics, were almost identical for the buoyant, forced, and mixed convective environments they modeled. This theory indicates it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (induced by fans and crew movements) by understanding its burning characteristics in an equivalent Earth-based stretch environment (induced by normal gravity buoyancy). Similarly, the material's burning characteristics in Lunar or Martian stretch environments (induced by partial gravity buoyancy) can be assessed. Equivalent stretch rates can be determined as a function of gravity, imposed flow, and geometry. A generalized expression for stretch rate which captures mixed convection includes both buoyant and forced stretch is defined as a = a(sub f) ((1 + (a(sub b))exp 2/(a(sub b))exp 2))exp 1/2. For purely buoyant flow, the equivalent stretch rate is a(sub b) = [(rho(exp e)-rho(exp *)/rho(sub e)][g/R](exp 1/2). For purely forced flow, the equivalent stretch rate is characterized by either a(sub f)= 2U(sub infinity)/R for a cylinder, or a(sub f)=U(sub jet)/d(sub jet) for a jet impinging on a planar surface. In these experiments, the buoyant stretch is varied through R, the radius of curvature, but the buoyant stretch could also be varied through g, the gravity level. In this way the effect of partial gravity, such as those found on the Moon (1/6 g) or Mars (1/3 g) can be captured in the definition of flame stretch.
    Keywords: Inorganic and Physical Chemistry
    Type: Fifth International Microgravity Combustion Workshop; 505--508; NASA/CP-1999-208917
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: We employ the opposed flow flame-spread configuration in order to examine flame-front instability of diffusion flames near cold, solid boundaries. The thermo-diffusive and hydrodynamic instabilities can transform an initially planar flame front into an irregularly curved, corrugated, possibly fragmented front. Under ordinary 1-g conditions, the buoyancy-induced flow masks the thermo-diffusive and hydrodynamic instabilities and produces planar flames. Such stable spreading flames have been observed for decades in laboratory experiments. Experiments in zero gravity are necessary to produce unstable flame fronts. The thermo-diffusive/hydrodynamic microgravity instability appears in diffusion flames such as, for example: the candle flame oscillations observed by Dietrich et al.; smolder instabilities on a recent Space Shuttle flight. Drs. T. Kashiwagi and S. Olson have attributed the latter to a lowered oxygen transport rate to the hot, reactive surface. Consider a burning surface near the flame extinction limit. The flow, or stretch, induced by the diffusion flame is weak, hence buoyancy plays a small role, thereby enabling previously secondary mechanisms, such as differential thermo-diffusion, to become the most important mechanisms. The flame leading edge becomes unstable; and diffusion flame breakup, oscillation, and rejoining all occur at a measurable frequency of approximately O(1 Hz). This project has only begun in January of this year, 1999. To date, there have been no flight experiments on flame spread instabilities. However, we have made numerous experiments in the NASA 2.2 and 5 second drop towers on flame spread over very thin cellulosic fuels. We have been very fortunate through a combination of factors, to be explained, to obtain some interesting, perhaps even compelling, results on diffusion flame instability in the presence of heat losses to cold surfaces.
    Keywords: Materials Processing
    Type: Fifth International Microgravity Combustion Workshop; 163-166; NASA/CP-1999-208917
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-06-07
    Description: The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Sixth International Microgravity Combustion Workshop; 93-96; NASA/CP-2001-210826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-06-07
    Description: One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Sixth International Microgravity Combustion Workshop; 409-412; NASA/CP-2001-210826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-06-07
    Description: The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Sixth International Microgravity Combustion Workshop; 17-20; NASA/CP-2001-210826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A Hele-Shaw flow apparatus constructed at Michigan State University (MSU) produces conditions that reduce influences of buoyancy-driven flows. In addition, in the MSU Hele-Shaw apparatus it is possible to adjust the heat losses from the fuel sample (0.001 in. thick cellulose) and the flow speed of the approaching oxidizer flow (air) so that the "flamelet regime of flame spread" is entered. In this regime various features of the flame-to-smolder (and vice versa) transition can be studied. For the relatively wide (approx. 17.5 cm) and long (approx. 20 cm) samples used, approximately ten flamelets existed at all times. The flamelet behavior was studied mechanistically and statistically. A heat transfer analysis of the dominant heat transfer mechanisms was conducted. Results indicate that radiation and conduction processes are important, and that a simple 1-D model using the Broido-Shafizadeh model for cellulose decomposition chemistry can describe aspects of the flamelet spread process. Introduction
    Keywords: Aircraft Propulsion and Power
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 29-32; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: NASA s current method of material screening determines fire resistance under conditions representing a worst-case for normal gravity flammability - the Upward Flame Propagation Test (Test 1[1]). Its simple pass-fail criteria eliminates materials that burn for more than 12 inches from a standardized ignition source. In addition, if a material drips burning pieces that ignite a flammable fabric below, it fails. The applicability of Test 1 to fires in microgravity and extraterrestrial environments, however, is uncertain because the relationship between this buoyancy-dominated test and actual extraterrestrial fire hazards is not understood. There is compelling evidence that the Test 1 may not be the worst case for spacecraft fires, and we don t have enough information to assess if it is adequate at Lunar or Martian gravity levels.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 123-124; NASA/TM-2004-213114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: The standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) is modified to provide a bench-scale test environment that simulates the low velocity buoyant or ventilation flow generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire (stagnation flow) configuration. For a fixed radiant flux, ignition delay times for characterization material PMMA are shown to decrease by a factor of three at low stretch, demonstrating that ignition delay times determined from normal cone tests significantly underestimate the risk in microgravity. The critical heat flux for ignition is found to be lowered at low stretch as the convective cooling is reduced. At the limit of no stretch, any heat flux that exceeds the surface radiative loss at the surface ignition temperature is sufficient for ignition. Regression rates for PMMA increase with heat flux and stretch rate, but regression rates are much more sensitive to heat flux at the low stretch rates, where a modest increase in heat flux of 25 kW/m2 increases the burning rates by an order of magnitude. The global equivalence ratio of these flames is very fuel rich, and the quantity of CO produced in this configuration is significantly higher than standard cone tests. These results [2] demonstrate the ELSA apparatus allows us to conduct normal gravity experiments that accurately and quantifiably evaluate a material s flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. These results also demonstrate that current NASA STD 6001 Test 2 (standard cone) is not conservative since it evaluates materials flammability with a much higher inherent buoyant convective flow.
    Keywords: Composite Materials
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 121-122; NASA/TM-2004-213114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: The effect of a step change in gravity level on the stability of low stretch diffusion flames over a solid fuel is studied both numerically and experimentally. Drop tower experiments have been conducted in NASA Glenn Research Center's 5.2 Zero Gravity Facility. In the experiments burning PMMA cylinders, a dynamic transition is observed when the steadily burning 1g flame is dropped and becomes a 0g flame. To understand the physics behind this dynamic transition, a transient stagnation point model has been developed which includes gas-phase radiation and solid phase coupling to describe this dynamic process. In this paper, the experimental results are compared with the model predictions. Both model and experiment show that the interior of the solid phase does not have time to change significantly in the few seconds of drop time, so the experimental results are pseudo-steady in the gas-phase, but the solid is inherently unsteady over long time scales. The model is also used to examine the importance of fractional heat losses on extinction, which clearly demonstrates that as the feedback from the flame decreases, the importance of the ongoing heat losses becomes greater, and extinction is observed when these losses represent 80% or more of the flame feedback.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 137-140; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...