ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2020-07-09
    Description: Visible near-infrared reflectance spectroscopy (VNIRS) and laser-induced breakdown spectroscopy (LIBS) are potential methods for the rapid and less expensive assessment of soil quality indicators (SQIs). The specific objective of this study was to compare VNIRS and LIBS for assessing SQIs. Data was collected from over 140 soil samples taken from multiple agricultural management systems in New Mexico, belonging to arid and semiarid agroecosystems. Sampled sites included New Mexico State University Agricultural Science Center research fields and several commercial farm fields in New Mexico. Partial least squares regression (PLSR) was used to establish predictive relationships between spectral data and SQIs. Fifteen soil measurements were modeled including the soil organic matter (SOM), permanganate oxidizable carbon (POXC), total microbial biomass (TMB), total bacteria biomass (TBB), total fungi biomass (TFB), mean weight diameter of dry aggregates (MWD), aggregates 2–4 mm (AGG 〉 2 mm), aggregates 〈 0.25 mm (AGG 〈 0.25 mm), wet aggregate stability (WAS), electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), and iron (Fe). Overall, calibrations based on measurements irrespective of locations performed better for LIBS and combined VNIRS-LIBS. Measurements separated according to locations highly improved the quality of prediction for VNIRS as compared to combined locations. For example, the prediction R2 values for regression of VNIRS were 0.19 for SOM, 0.30 for POXC, 0.24 for MWD, 0.15 for AGG 〉 2 mm, and 0.13 for EC in combined datasets irrespective of location. When separated according to locations, for one of the locations, the predictive R2 values for VNIRS were 0.48 for SOM, 0.70 for POXC, 0.67 for MWD, 0.60 for AGG 〉 2 mm, and 0.51 for EC. The prediction values varied with the sampling time for both LIBS and VNIRS. For example, the prediction values of some SQIs using VNIRS were higher in samples collected in winter for measurements, including SOM (0.90), MWD (0.96), WAS (0.66), and EC (0.94). Using the VNIRS, the corresponding predictive values for the same SQIs were lower for samples collected in the fall (SOM (0.61), MWD (0.45), WAS (0.46), and EC (0.65)). While this study illustrates the prospects of VNIRS and LIBS for estimating SQIs, a more comprehensive evaluation, using a larger regional dataset, is required to understand how the site and soil factors affect VNIRS and LIBS, in order to enhance the utility of these methods for soil quality assessment in arid and semiarid agroecosystems.
    Electronic ISSN: 2571-8789
    Topics: Biology , Chemistry and Pharmacology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-11-01
    Print ISSN: 1089-5639
    Electronic ISSN: 1520-5215
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-08-05
    Description: The electronic band structures of unstrained and biaxially strained MoO 3 were determined by first-principles density functional theory calculations. From the band structures, the effects of strain on the charge carrier mobilities were investigated. These mobilities were calculated based on deformation potential theory. First, we found that the electron effective masses of unstrained bulk pristine MoO 3 are about three times smaller than the corresponding hole effective masses, and, second, the electron mobility is about ten times the hole mobility, making the compound an electron transport material. Our results also show that, when compressed biaxially, as the strain increases from 0% to 1.5%, the electron (hole) mobility increases by 0% to 53% (0% to 17%). On the other hand, the application of a biaxial tensile strain decreases the electron (hole) mobility by 65% to 0% (90% to 0%), as the tensile strain increases from 0% to 1.5   % . These changes are caused mainly by the fact that the carrier effective masses reduce (increase) upon application of compressive (tensile) strain. Only the acoustic-phonon limited carrier mobilities were computed; hence, the actual mobilities cannot be less than the values obtained in this work.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019
    Description: A study was conducted in an irrigated arid agroecosystem in southwestern USA, to compare two conservation tillage systems (strip tillage (ST) and no-tillage (NT)) to conventional, plow-based tillage (PT) system. Corn silage (Zea mays L.) was planted in this trial. Growth parameters (plant population and height) of corn silage were measured during the season and yield was evaluated at harvest. Soil physical measurements assessed included mean weight diameter of dry aggregates, wet aggregate stability, and penetrometer resistance. While soil biological measurements included total microbial biomass, diversity index (DI), total bacteria biomass, total fungi biomass (TFB), arbuscular mycorrhizae fungi (AMF), and total saprophytes. Results showed that plant population and silage yield at 65% moisture content were not significant with tillage during both trial years. Soil physical parameters were mostly not significant with tillage, while three out of the six biological measurements (DI, TF, and AM) were significant with tillage at p ≤ 0.05. No-tillage had higher DI and TFB than the ST, but not different from PT, while AMF was significantly higher in PT than ST, but not different from NT. The study demonstrates that farmers in the study region can adopt conservation tillage without yield losses during the early years of transition.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-08-07
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
  • 17
    Publication Date: 2018-08-10
    Description: Agriculture, Vol. 8, Pages 124: Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems Agriculture doi: 10.3390/agriculture8080124 Authors: Mohammed Omer Omololu J. Idowu April L. Ulery Dawn VanLeeuwen Steven J. Guldan Improving the soil quality in arid agro-ecosystems requires a greater understanding of how the time-of-sampling and management affect the soil measurements. We evaluated the selected soil quality indicators on samples collected at a 0–0.15 m depth, and at various sampling dates of the year, corresponding to the fall of 2015, winter of 2015/2016, spring of 2016, and the summer of 2016. The three crop management systems sampled included alfalfa (Medicago sativa), upland cotton (Gossypium hirsutum), and pecan (Carya illinoinensis). The soil properties measured included the wet aggregate stability (WAS), mean weight diameter of dry aggregates (MWD), dry aggregates greater than 2 mm (AGG >2 mm), dry aggregates less than 0.25 mm (AGG <0.25 mm), available water capacity (AWC), soil organic matter (SOM), permanganate oxidizable carbon (POXC), soil bulk density (BD), soil electrical conductivity (EC), pH, nitrate-nitrogen (NO3-N), extractable potassium (K), extractable phosphorus (P), calcium (Ca), magnesium (Mg), sodium adsorption ratio (SAR), and micronutrients (zinc, iron, copper, and manganese). Out of the 21 soil measurements, 15 varied significantly with the time-of-sampling within a year, although there were no consistent trends in variability. However, only a few measurements differed significantly with the crop management practices tested. Wet aggregate stability, MWD, AWC, and BD were significantly higher in the summer, while POXC and SOM were significantly higher in the fall and winter, respectively. Soil quality indicators such as NO3-N, K, and P decreased significantly during the spring. This study shows that the seasonal variability of the soil measurements can be significant in the arid agro-ecosystems, with the magnitude of variation depending on the measurement type. The soil managers in the region need to account for this variability, in order to be able to assess the changes in the soil quality. Also, because of the variability that can occur across the different sampling dates within a year, it is advisable to sample during the same period every year, for a consistent interpretation of the directional changes of the soil quality indicators.
    Electronic ISSN: 2077-0472
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018
    Description: Improving the soil quality in arid agro-ecosystems requires a greater understanding of how the time-of-sampling and management affect the soil measurements. We evaluated the selected soil quality indicators on samples collected at a 0–0.15 m depth, and at various sampling dates of the year, corresponding to the fall of 2015, winter of 2015/2016, spring of 2016, and the summer of 2016. The three crop management systems sampled included alfalfa (Medicago sativa), upland cotton (Gossypium hirsutum), and pecan (Carya illinoinensis). The soil properties measured included the wet aggregate stability (WAS), mean weight diameter of dry aggregates (MWD), dry aggregates greater than 2 mm (AGG 〉2 mm), dry aggregates less than 0.25 mm (AGG 〈0.25 mm), available water capacity (AWC), soil organic matter (SOM), permanganate oxidizable carbon (POXC), soil bulk density (BD), soil electrical conductivity (EC), pH, nitrate-nitrogen (NO3-N), extractable potassium (K), extractable phosphorus (P), calcium (Ca), magnesium (Mg), sodium adsorption ratio (SAR), and micronutrients (zinc, iron, copper, and manganese). Out of the 21 soil measurements, 15 varied significantly with the time-of-sampling within a year, although there were no consistent trends in variability. However, only a few measurements differed significantly with the crop management practices tested. Wet aggregate stability, MWD, AWC, and BD were significantly higher in the summer, while POXC and SOM were significantly higher in the fall and winter, respectively. Soil quality indicators such as NO3-N, K, and P decreased significantly during the spring. This study shows that the seasonal variability of the soil measurements can be significant in the arid agro-ecosystems, with the magnitude of variation depending on the measurement type. The soil managers in the region need to account for this variability, in order to be able to assess the changes in the soil quality. Also, because of the variability that can occur across the different sampling dates within a year, it is advisable to sample during the same period every year, for a consistent interpretation of the directional changes of the soil quality indicators.
    Electronic ISSN: 2077-0472
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-03-11
    Description: A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC), and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn) contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.
    Electronic ISSN: 2077-0472
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-11-16
    Description: Author(s): Sevan Harput, James McLaughlan, David M. J. Cowell, Pierre Gelat, Nader Saffari, Jia Yang, Omololu Akanji, Peter J. Thomas, David A. Hutchins, and Steven Freear Methods for generating acoustic fields, as in ultrasound scans, generally rely on a linear process within the transducer. In this study, an acoustic signal is generated using the n o n l i n e a r effects observed in granular chains via propagation of solitary waves. An analytical model is developed to simulate the behavior of a granular chain attached to an impedance-matching layer (which helps to deposit the ultrasonic energy into biological tissue). A prototype device with a chain of aluminum spheres and a vitreous-carbon matching layer demonstrates the feasibility of such systems for biomedical applications. [Phys. Rev. Applied 8, 054032] Published Wed Nov 15, 2017
    Electronic ISSN: 2331-7019
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...