ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-13
    Description: Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey and previously the International Lunar Network. Because the lander for such a mission will be relatively small, the heat flow instrumentation must be a low-mass and low-power system. The instrument needs to measure both thermal gradient and thermal conductivity of the regolith penetrated. It also needs to be capable of excavating a deep enough hole (approx. 3 m) to avoid the effect of potential long-term changes of the surface thermal environment. The recently developed pneumatic excavation system can largely meet the low-power, low-mass, and the depth requirements. The system utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. The thermal sensors consist of resistance temperature detectors (RTDs) embedded on the stem and an insitu thermal conductivity probe attached to the cone tip. The thermal conductivity probe consists of a short 'needle' (2.4-mm diam. and 15- to 20-mm length) that contains a platinum RTD wrapped in a coil of heater wire. During a deployment, when the penetrating cone reaches a desired depth, it stops blowing gas, and the stem pushes the needle into the yet-to-be excavated, undisturbed bottom soil. Then, it begins heating and monitors the temperature. Thermal conductivity of the soil can determined from the rate of temperature increase with time. When the measurement is complete, the system resumes excavation until it reaches the next targeted depth.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN13914 , Lunar and Planetary Science Conference; Mar 17, 2014 - Mar 21, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6580.2012 , International Workshop on Instrumentation for Planetary Missions; Oct 10, 2012 - Oct 12, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: The Apollo Heat Flow Experiment (HFE) was conducted at landing sites 15 and 17. On Apollo 15, surface and subsurface temperatures were monitored from July 1971 to January 1977. On Apollo 17, monitoring took place from December 1972 to September 1977. The investigators involved in the HFE examined and archived only data from the time of deployment to December 1974. The present authors recovered and restored major portions of the previously un-archived HFE data from January 1975 through September 1977. The HFE investigators noted that temperature of the regolith well below the reach of insolation cycles (approx. 1 m) rose gradually through December 1974 at both sites. The restored data showed that the subsurface warming continued until the end of observations in 1977. Simultaneously, the thermal gradient decreased, because the warming was more pronounced at shallower depths. The present study has examined potential causes for the warming. Recently acquired images of the Lunar Reconnaissance Orbiter Camera over the two landing sites show that the regolith on the paths of the astronauts turned darker, lowering the albedo. We suggest that, as a result of the astronauts' activities, solar heat intake by the regolith increased slightly on average, and that resulted in the observed warming. Simple analytical heat conduction models with constant regolith thermal properties can show that an abrupt increase in surface temperature of 1.6 K to 3.5 K at the time of probe deployment best duplicate the magnitude and the timing of the observed subsurface warming's at both Apollo sites.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: GSFC-E-DAA-TN55266 , Journal of Geophysical Research: Planets; 123; 5; 1125-1139
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-12
    Description: The needle probe method (also known as the' hot wire' or 'line heat source' method) is widely used for in-situ thermal conductivity measurements on soils and marine sediments on the earth. Variants of this method have also been used (or planned) for measuring regolith on the surfaces of extra-terrestrial bodies (e.g., the Moon, Mars, and comets). In the near-vacuum condition on the lunar and planetary surfaces, the measurement method used on the earth cannot be simply duplicated, because thermal conductivity of the regolith can be approximately 2 orders of magnitude lower. In addition, the planetary probes have much greater diameters, due to engineering requirements associated with the robotic deployment on extra-terrestrial bodies. All of these factors contribute to the planetary probes requiring much longer time of measurement, several tens of (if not over a hundred) hours, while a conventional terrestrial needle probe needs only 1 to 2 minutes. The long measurement time complicates the surface operation logistics of the lander. It also negatively affects accuracy of the thermal conductivity measurement, because the cumulative heat loss along the probe is no longer negligible. The present study improves the data reduction algorithm of the needle probe method by shortening the measurement time on planetary surfaces by an order of magnitude. The main difference between the new scheme and the conventional one is that the former uses the exact mathematical solution to the thermal model on which the needle probe measurement theory is based, while the latter uses an approximate solution that is valid only for large times. The present study demonstrates the benefit of the new data reduction technique by applying it to data from a series of needle probe experiments carried out in a vacuum chamber on JSC-1A lunar regolith stimulant. The use of the exact solution has some disadvantage, however, in requiring three additional parameters, but two of them (the diameter and the volumetric heat capacity of the probe) can be measured and the other (the volumetric heat capacity of the regolith/stimulant) may be estimated from the surface geologic observation and temperature measurements. Therefore, overall, the new data reduction scheme would make in-situ thermal conductivity measurement more practical on planetary missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN10790
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: On the six Apollo lunar landed missions, the Astronauts deployed the Apollo Lunar Surface Experiments Package (ALSEP) science stations which measured active and passive seismic events, magnetic fields, charged particles, solar wind, heat flow, the diffuse atmosphere, meteorites and their ejecta, lunar dust, etc. Today s investigators are able to extract new information and make new discoveries from the old ALSEP data utilizing recent advances in computer capabilities and new analysis techniques. However, current-day investigators are encountering problems in trying to use the ALSEP data. The data were in formats often not well described in the published reports and contained rerecording anomalies which required tape experts to resolve. To solve these problems the DPS Lunar Data Node was established at NASA Goddard Space Flight Center (GSFC) NASA Space Science Data Center (NSSDC) in 2008 and is currently in the process of making the existing archived ALSEP data available to current-day investigators in easily useable forms. However, current estimates by NSSDC archivists are that only about 60 percent of the PI processed ALSEP data and less than 30 percent of the raw experiment ALSEP data-of-interest to current lunar science investigators are currently in the NSSDC archives.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6670.2012 , NASA Science Lunar Institute (NLSI) Forum Meeting; Jul 17, 2012 - Jul 19, 2012; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-19
    Description: The Apollo astronauts deployed geothermal heat flow instruments at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiments Packages (ALSEP) in July 1971 and December 1972, respectively. These instruments continuously transmitted data to the Earth until September 1977. Four decades later, the data from the two Apollo sites remain the only set of in-situ heat flow measurements obtained on an extra-terrestrial body. Researchers continue to extract additional knowledge from this dataset by utilizing new analytical techniques and by synthesizing it with data from more recent lunar orbital missions such as the Lunar Reconnaissance Orbiter. In addition, lessons learned from the Apollo experiments help contemporary researchers in designing heat flow instruments for future missions to the Moon and other planetary bodies. For example, the data from both Apollo sites showed gradual warming trends in the subsurface from 1971 to 1977. The cause of this warming has been debated in recent years. It may have resulted from fluctuation in insolation associated with the 18.6-year-cycle precession of the Moon, or sudden changes in surface thermal environment/properties resulting from the installation of the instruments and the astronauts' activities. These types of reanalyses of the Apollo data have lead a panel of scientists to recommend that a heat flow probe carried on a future lunar mission reach 3 m into the subsurface, approx 0.6 m deeper than the depths reached by the Apollo 17 experiment. This presentation describes the authors current efforts for (1) restoring a part of the Apollo heat flow data that were left unprocessed by the original investigators and (2) designing a compact heat flow instrument for future robotic missions to the Moon. First, at the conclusion of the ALSEP program in 1977, heat flow data obtained at the two Apollo sites after December 1974 were left unprocessed and not properly archived through NASA. In the following decades, heat flow data from January 1975 through February 1976, as well as the metadata necessary for processing the data (the data reduction algorithm, instrument calibration data, etc.), were somehow lost. In 2010, we located 450 original master archival tapes of unprocessed data from all the ALSEP instruments for a period of April through June 1975 at the Washington National Records Center. We are currently extracting the heat flow data packets from these tapes and processing them. Second, on future lunar missions, heat flow probes will likely be deployed by a network of small robotic landers, as recommended by the latest Decadal Survey of the National Academy of Science. In such a scenario, the heat flow probe must be a compact system, and that precludes use of heavy excavation equipment such as a rotary drill for reaching the 3-m target depth. The new heat flow system under development uses a pneumatically driven penetrator. It utilizes a stem that winds out of a reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab experiments have demonstrated its effectiveness in lunar vacuum.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6860.2012 , American Geophysical Union (AGU)45th Annual Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-20
    Description: Overarching Principles: Must be better than Apollo (coverage, duration, instrument performance); Learn from the Apollo experience. Lunar Geophysical Network (LGN) New Frontiers (NF)-class mission, as part of the NF-5 call. This mission consists of several identical landers distributed across the lunar surface, each carrying geophysical instrumentation. The primary science objectives are to characterize the Moons internal structure, seismic activity, global heat flow budget, bulk composition, & magnetic field. Global distribution of multiple stations. Each station should contain a seismometer, heat flow probe, electromagnetic sounder, laser retroreflector (lunar nearside). Each station must be long-lived (e.g., approximately10 years)to allow other stations (from other countries?) to be integrated with the anchor nodes to form the International Lunar Network. Why LGN? Planetary Science: Moon represents an end-member in planetary evolution (large small body, small rocky planet); Primary planetary differentiation preserved; Key to understanding terrestrial planet initial differentiation. Lunar Science: Heat flow probes yield crustal heat budget estimates; Combined with EMS (ElectroMagnetic Sounding), the temperature profile of the deep interior can be modeled along with mineralogy; Seismic and LLR (Lunar Laser Ranging) data also yield structure and compositional information of the lunar interior; High fidelity data from LGN would enhance the usefulness of the GRAIL (Gravity Recovery and Interior Laboratory) and SELENE (Selenological and Engineering Explorer) gravity data. Human Exploration: LGN must be established prior to renewed human lunar activity - we do not know the exact locations or causes of the shallow moonquakes (SMQs) - the largest magnitude seismic events recorded by Apollo (1 event per year of magnitude greater than or equal to 5); Establishing surface infrastructure near SMQ epicenters must be avoided.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: MSFC-E-DAA-TN66747 , Lunar and Planetary Science Conference (LPSC 2019); 18ý22 Mar. 2019; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (〉 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.
    Keywords: Instrumentation and Photography
    Type: GSFC.ABS.6858.2012 , Instrumentation for Planetary Missions (IPM-2012); Oct 10, 2012 - Oct 12, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: On the six Apollo landed missions, the Astronauts deployed the Apollo Lunar Surface Experiments Package (ALSEP) science stations which measured active and passive seismic events, magnetic fields, charged particles, solar wind, heat flow, the diffuse atmosphere, meteorites and their ejecta, lunar dust, etc. Today's scientists are able to extract new information and make new discoveries from the old ALSEP data utilizing recent advances in computer capabilities and new analysis techniques. However, current-day investigators are encountering problems trying to use the ALSEP data. In 2007 archivists from NASA Goddard Space Flight Center (GSFC) National Space Science Data Center (NSSDC) estimated only about 50 percent of the processed ALSEP lunar surface data-of-interest to current lunar science investigators were in the NSSDC archives. The current-day lunar science investigators found most of the ALSEP data, then in the NSSDC archives. were extremely difficult to use. The data were in forms often not well described in the published reports and rerecording anomalies existed in the data which could only be resolved by tape experts. To resolve this problem, the DPS Lunar Data Node was established in 2008 at NSSDC and is in the process of successfully making the existing archived ALSEP data available to current-day investigators in easily useable forms. In July of 2010 the NASA Lunar Science Institute (NLSI) at Ames Research Center established the Recovery of Missing ALSEP Data Focus Group in recognition of the importance of the current activities to find the raw and processed ALSEP data missing from the NSSDC archives.
    Keywords: Mathematical and Computer Sciences (General)
    Type: 42nd Lunar and Planetary Science Conference; Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: On NASA's first human lunar landing on Apollo II in July 1969, the astronauts deployed a set of scientific instruments called Early Apollo Science Experiments Package (EASEP). It was powered by a solar panel and operated for -20 earth-days and transmitted data to the Earth. This paved a way for deployment of more expansive instrument packages, powered by radioisotope thermoelectric generators, on Apollo 12, 14, 15, 16, and 17 in November 1969 through December 1972. They were called Apollo Lunar Surface Experiments Packages (ALSEPs). Each ALSEP consisted of a variety of instruments such as seismometers, magnetometers, solar wind spectrometers, heat flow probes, etc. The majority of these instruments kept functioning long after their one-year design lifetime requirement, and they transmitted data to the Earth until September 1977, when the program ended. Over the three decades that followed, users of the NSSDC-archived data have learned that many of the ALSEP instrument data are not complete. The present work is a progress report on the authors' recent effort for restoring the entire raw ALSEP data that were received from the Moon,
    Keywords: Computer Operations and Hardware
    Type: 42nd Lunar and Planetary Conference; Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...