ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 5 (1982), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The apparatus described here is a fully portable, steady-state gas exchange system for simultaneous measurements of the CO2 exchange and transpiration of single, attached leaves. The leaf cuvette provides temperature, humidity, and CO2-concentration control. The system is suitable for either surveys or detailed studies of photosynthetic and stomatal responses to environmental variables. Representative data demonstrate the response time characteristics of the system and constitute the first field evidence of stomatal behaviour consistent with a recent hypothesis concerning the optimum pattern of stomatal conductance for the maximization of water-use-efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 10 (1987), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. We present a method for estimating the construction costs of plant tissues from measurements of heat of combustion, ash content, and organic nitrogen content. The method predicts glucose equivalents, the amount of glucose required to provide carbon skeletons and reductant to synthesize a quantity of organic product. Glucose equivalents have previously been calculated from the elemental composition of tissue. We define construction cost as the amount of glucose required to provide carbon skeletons, reductant and ATP for synthesizing the organic compounds in a tissue via standard biochemical pathways. The fraction of the total construction cost of a compound or tissue (excluding costs of transporting compounds) that is reflected in its glucose equivalents is the biosynthetic efficiency (EB). This quantity varies between 0.84 and 0.95 for tissues with a wide range of compositions. Using the new method, total construction cost can be estimated to ± 6% of the value obtained from biochemical pathway analysis.Construction costs of leaves of three chaparral species were estimated using the proposed method and compared to previously published values, derived using different methods. Agreement among methods was generally good. Differences were probably due to a combination of inaccuracy in the estimated biosynthetic efficiency and technical difficulties with biochemical analysis, one of the older methods of determining construction cost.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 9 (1986), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract A field portable, steady-state gas-exchange system which measures both CO2 and water vapour exchange of single intact leaves during fumigations with SO2 is described.Within the leaf cuvette temperature, light, humidity and both CO2 and SO2 concentrations are controlled to preset levels. Gas flow and concentrations are controlled by mass flow controllers. Photosynthetic uptake of CO2 can be determined either by differential depletion or null balance measurement. Water vapour exchange is measured differentially and transpiration and conductance to water vapour determined. Sulphur dioxide is measured directly within the cuvette exhaust gas line by UV-pulse fluorescence.The performance of this system under field conditions is described and the physiological measurements compared with those obtained with other systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: At elevated atmospheric CO2 concentrations ([CO2]a), photosynthetic capacity (Amax) and root fraction (ηR, the ratio of root to plant dry mass) increased in some studies and decreased in others. Here, we have explored possible causes of this, focusing on the relative magnitudes of the effects of elevated [CO2]a on specific leaf (nm) and plant (np) nitrogen concentrations, leaf mass per unit area (h), and plant nitrogen productivity (α). In our survey of 39 studies with 35 species, we found that elevated [CO2]a led to decreased nm and np in all the studies and to increased h and α in most of the studies. The magnitudes of these changes varied with species and with experimental conditions.Based on a model that integrated [CO2]a-induced changes in leaf nitrogen into a biochemically based model of leaf photosynthesis, we predicted that, to a first approximation, photosynthesis will be upregulated (Amax will increase) when growth at increased [CO2]a leads to increases in h that are larger than decreases in nm. Photosynthesis will be downregulated (Amax will decrease) when increases in h are smaller than decreases in nm. The model suggests that photosynthetic capacity increases at elevated [CO2]a only when additional leaf mesophyll more than compensates the effects of nitrogen dilution.We considered two kinds of regulatory paradigms that could lead to varying responses of ηR to elevated [CO2]a, and compared the predictions of each with the data. A simple static model based on the functional balance concept predicts that ηR should increase when neither np nor h is very responsive to elevated [CO2]a. The quantitative and qualitative agreement of the predictions with data from the literature, however, is poor. A model that predicts ηR from the relative sensitivities of photosynthesis and relative growth rate to elevated [CO2]a corresponds much more closely to the observations. In general, root fraction increases if the response of photosynthesis to [CO2]a is greater than that of relative growth rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Wild radish plants deprived of, and continuously supplied with solution NO−3 for 7 d following 3 weeks growth at high NO−3 supply were compared in terms of changes in dry weight, leaf area, photosynthesis and the partitioning of carbon and nitrogen (NH2-N and NO−3-N) among individual organs. Initial levels of NO−3-N accounted for 25% of total plant N. Following termination of NO−3 supply, whole plant dry weight growth was not significantly reduced for 3 d, during which time plant NH2-N concentration declined by about 25% relative to NO−3-supplied plants, and endogenous NO−3-N content was reduced to nearly zero. Older leaves lost NO−3 and NH2-N, and roots and young leaves gained NH2-N in response to N stress. Relative growth rate declined due both to decreased net assimilation rate and a decrease in leaf area ratio. A rapid increase in specific leaf weight was indicative of a greater sensitivity to N stress of leaf expansion compared to carbon gain. In response to N stress, photosynthesis per unit leaf area was more severely inhibited in older leaves, whereas weight-based rates were equally inhibited among all leaf ages. Net photosynthesis was strongly correlated with leaf NH2-N concentration, and the relationship was not significantly different for leaves of NO3−-supplied compared to NO−3-deprived plants. Simulations of the time course of NO−3 depletion for plants of various NH2-N and NO−3 compositions and relative growth rates indicated that environmental conditions may influence the importance of NO−3 accumulation as a buffer against fluctuations in the N supply to demand ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 1 (1978), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. A comparison between two sympatric winter desert annuals, Camissonia claviformis and Malvastrum rotundi folium showed that both gained similar amounts of carbon during a spring day, although by very different means. Camissonia has horizontally fixed leaves which have a very high photosynthetic capacity. The temperature optimum of photosynthesis for this species is near 20°C. Malvastrum has leaves with a lower photosynthetic capacity and a photosynthetic temperature optimum near 30°C. Leaves of the latter species remain normal to the sun throughout the course of the day. The tracking response and high temperature optimum for photosynthesis of Malvastrum result in a high daily carbon gain and also a high water-use efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 14 (1995), S. 265-270 
    ISSN: 1476-5535
    Keywords: Triphenyltin ; Diphenyltin ; Skeletonema costatum ; Dunaliella tertiolecta ; Photosynthesis ; Respiration ; Organotins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The effects of diphenyltin and triphenyltin (TPhT) on gross photosynthesis and respiration by the diatomSkeletonema costatum (Greville) Cleve and the chlorophyteDunaliella tertiolecta (Butscher) were investigated by measuring the rates of change of oxygen concentration in samples which were alternately illuminated unilluminated. Measurements were carried out for 90 min after organotin addition. Triphyltin at concentrations in the nM to μM range inhibited photosynthesis and respiration in both ogranisms. Levels of TPhT inhibiting these processes were two to three orders of magnitude higher forD. tertiolecta than forS. costatum. Photosynthesis and respiration byD. tertiolecta were resistant to diphenyltin at concentrations up to its limit of solubility (0.84 mM). WithS. costatum, inhibitory levels of diphenyltin were one to two orders of magnitude higher than those for triphenyltin. Inhibition was often progressive over the period after organotin addition. This effect varied in intensity and was more noticeale with the more resistantD. tertiolecta. Comparison of our results with levels of organotins which have been obeserved by others in Mediterranean coastal waters indicate that environmental levels of TPhT could influence phytoplankton composition and dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 20 (1998), S. 200-204 
    ISSN: 1476-5535
    Keywords: Keywords: phytoplankton; organotin; triphenyltin; transmission electron microscopy; chlorophyte; Dunaliella tertiolecta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Chemostat-grown cells of the chlorophyte Dunaliella tertiolecta (Butcher) exposed to triphenyltin were examined using transmission electron microscopy. Following a 1-h exposure to 21 and 84μM triphenyltin, mitochondria underwent structural damage and the thylakoid membranes of a small proportion of cells spread from the usual compact arrangement. Prolonging the exposure time resulted in significant cell lysis in cultures exposed to 84μM triphenyltin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1435-0629
    Keywords: Key words: biosphere metabolism; carbon cycle; carbon fluxes; global change; terrestrial ecosystems.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Understanding terrestrial carbon metabolism is critical because terrestrial ecosystems play a major role in the global carbon cycle. Furthermore, humans have severely disrupted the carbon cycle in ways that will alter the climate system and directly affect terrestrial metabolism. Changes in terrestrial metabolism may well be as important an indicator of global change as the changing temperature signal. Improving our understanding of the carbon cycle at various spatial and temporal scales will require the integration of multiple, complementary and independent methods that are used by different research communities. Tools such as air sampling networks, inverse numerical methods, and satellite data (top-down approaches) allow us to study the strength and location of the global- and continental-scale carbon sources and sinks. Bottom-up studies provide estimates of carbon fluxes at finer spatial scales and examine the mechanisms that control fluxes at the ecosystem, landscape, and regional scales. Bottom-up approaches include comparative and process studies (for example, ecosystem manipulative experiments) that provide the necessary mechanistic information to develop and validate terrestrial biospheric models. An iteration and reiteration of top-down and bottom-up approaches will be necessary to help constrain measurements at various scales. We propose a major international effort to coordinate and lead research programs of global scope of the carbon cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Rates of emission of H2S were measured for 10-week-old soybean plants (Glycine max L. Merr. cvs. Kent, Peking and York) raised in growth cabinets. Days were 12 h long, photosynthetically active radiation (PAR) was about 600 mE m-2 s-1, humidity was 50-60% and the temperature was 15 C at night and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...