ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-12
    Description: To enable the use of GRACE and GRACE-FO earth observation data for rapid monitoring applications, the Horizon2020 funded EGSIEM (European Gravity Service for Improved Emergency Management) project has established a demonstrator for a near real-time (NRT) gravity field service. The service aims to increase the temporal resolution of mass transport products from one month to one day and to reduce the latency from currently two months to five days. This allows the monitoring of hydrological extreme events as they occur, in contrast to a ‘confirmation after occurrence’ as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. On-line validation will be performed by the University of Luxembourg using GNSS loading. A six-month long operational test run of the service starting in April 2017 is planned, in case GRACE Quick-Look data (provided by JPL) is still available. Within this time period, daily gravity field solutions serve as input to the EGSIEM Hydrological Service, which derives flood and drought indicators to be used within DLR’s Center for Satellite Based Crisis Information and the Global Flood Awareness System (GloFAS). This contribution highlights the current status of the NRT service and the results of the preparation phase. The performance of the NRT mass transport products will be shown by comparison with independent GNSS loading and ocean bottom pressure data as well as as catchment aggregated values for hydrological extreme Events.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  Geophysical Research Abstracts, Vol. 18, EGU2016-14535, 2016
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-12
    Description: Earth observation satellites yield a wealth of data for scientific, operational and commercial exploitation. However, the redistribution of mass in the system Earth is not yet part of the standard inventory of Earth Observation (EO) data products to date. It is derived from the Gravity Recovery and Climate Experiment (GRACE) mission and its Follow-On mission (GRACE-FO). Among many other applications, mass redistribution provides fundamental insights into the global water cycle. Changes in continental water storage impact the regional water budget and can, in extreme cases, result in floods and droughts that often claim a high toll on infrastructure, economy and human lives. The initiative for a European Gravity Service for Improved Emergency Management (EGSIEM) established three different prototype services to promote the unique value of mass redistribution products for Earth Observation in general and for early-warning systems in particular. The first prototype service is a scientific combination service to derive improved mass redistribution products from the combined knowledge of the European GRACE analysis centres. Secondly, the timeliness and reliability of such products is a primary concern for any early-warning system and therefore EGSIEM established a prototype for a near real-time service that provides dedicated gravity field information with a maximum latency of five days . Third, EGSIEM established a prototype of a hydrological / early warning service that derives wetness indices as indicators of hydrological extremes and assessed their potential for timely scheduling of high-resolution optical/radar satellites for follow-up observations in case of evolving hydrological extreme events.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-02-12
    Description: Recently completed performance studies of future gravity mission concepts arrived at sometimes contradicting conclusions about the importance of non-tidal aliasing errors that remain in the finally retrieved gravity field time-series. In those studies, typically a fraction of the differences between two different models of atmosphere and ocean mass variability determined the magnitude of the aliasing errors. Since differences among arbitrary pairs of the numerical models available might lead to widely different aliasing errors and thus conclusions regarding limiting error contributors of a candidate mission, we present here for the first time a version of a realistically perturbed de-aliasing model that is consistent with the updated ESA Earth System Model for gravity mission simulation studies (Dobslaw et al., 2015). The error model is available over the whole 12-year period of the ESA ESM and consists of two parts: (i) a component containing signals from physical processes that are intentionally omitted from de-aliasing models, as for a example, variations in global eustatic sea-level; and (ii) a series of true errors that consist of in total five different components with realistically re-scaled variability at both small and large spatial scales for different frequency bands ranging from sub-daily to sub-monthly periods. Based on a multi-model ensemble of atmosphere and ocean mass variability available to us for the year 2006, we will demonstrate that our re-scaled true errors have plausible magnitudes and correlation characteristics in all frequency bands considered. The realism of the selected scaling coefficients for periods between 1 and 30 days is tested further by means of a variance component estimation based on the constrained daily GRACE solution series ITSG-GRACE2014. Initial full-scale simulation experiments are used to re-assess the relative importance of non-tidal de-aliasing errors for the GRACE-FO mission, which might be subsequently expanded to further mission candidates currently under consideration for a potential Next Generation Gravity Mission. Dobslaw, H. Bergmann-Wolf, I., Dill, R., Forootan, E., Klemann, V., Kusche, J., Sasgen, I. (2015), The updated ESA Earth System Model for future gravity mission simulation studies, J. Geodesy, doi:10.1007/s00190- 014-0787-8.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-12-10
    Description: Abstract Back to top Although the knowledge of the gravity of the Earth has improved considerably with CHAMP, GRACE, and GOCE (see appendices for a list of abbreviations) satellite missions, the geophysical community has identified the need for the continued monitoring of the time-variable component with the purpose of estimating the hydrological and glaciological yearly cycles and long-term trends. Currently, the GRACE-FO satellites are the sole dedicated provider of these data, while previously the GRACE mission fulfilled that role for 15 years. There is a data gap spanning from July 2017 to May 2018 between the end of the GRACE mission and start the of GRACE-FO, while the Swarm satellites have collected gravimetric data with their GPS receivers since December 2013. We present high-quality gravity field models (GFMs) from Swarm data that constitute an alternative and independent source of gravimetric data, which could help alleviate the consequences of the 10-month gap between GRACE and GRACE-FO, as well as the short gaps in the existing GRACE and GRACE-FO monthly time series. The geodetic community has realized that the combination of different gravity field solutions is superior to any individual model and set up the Combination Service of Time-variable Gravity Fields (COST-G) under the umbrella of the International Gravity Field Service (IGFS), part of the International Association of Geodesy (IAG). We exploit this fact and deliver the highest-quality monthly GFMs, resulting from the combination of four different gravity field estimation approaches. All solutions are unconstrained and estimated independently from month to month. We tested the added value of including kinematic baselines (KBs) in our estimation of GFMs and conclude that there is no significant improvement. The non-gravitational accelerations measured by the accelerometer on board Swarm C were also included in our processing to determine if this would improve the quality of the GFMs, but we observed that is only the case when the amplitude of the non-gravitational accelerations is higher than during the current quiet period in solar activity. Using GRACE data for comparison, we demonstrate that the geophysical signal in the Swarm GFMs is largely restricted to spherical harmonic degrees below 12. A 750 km smoothing radius is suitable to retrieve the temporal variations in Earth's gravity field over land areas since mid-2015 with roughly 4 cm equivalent water height (EWH) agreement with respect to GRACE. Over ocean areas, we illustrate that a more intense smoothing with 3000 km radius is necessary to resolve large-scale gravity variations, which agree with GRACE roughly at the level of 1 cm EWH, while at these spatial scales the GRACE observes variations with amplitudes between 0.3 and 1 cm EWH. The agreement with GRACE and GRACE-FO over nine selected large basins under analysis is 0.91 cm, 0.76 cm yr−1, and 0.79 in terms of temporal mean, trend, and correlation coefficient, respectively.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  Earth Observation with CHAMP
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  Geophysical Reserach Abstracts, 11, EGU2009-9286
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...