ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2020-11-13
    Description: An amendment to this paper has been published and can be accessed via a link at the top of the paper.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-08-01
    Print ISSN: 1527-6988
    Electronic ISSN: 1527-6996
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: Over the years, hurricane track and intensity forecasts and storm surge models and the digital terrain and bathymetry data they depend on have improved significantly. Strides have also been made in knowledge of the detailed variation of the surface wind field driving the surge. The area of least improvement has been in obtaining data on the details of the temporal/spatial variation of the storm surge dome of water as it evolves and inundates the land to evaluate the performance of the numerical models. Tide gages in the vicinity of the landfall are frequently destroyed by the surge. Survey crews dispatched after the event provide no temporal information and only indirect indications of the maximum surge envelope over land. The landfall of Hurricane Bonnie on 26 August 1998, with a surge less than 2 m, provided an excellent opportunity to demonstrate the potential benefits of direct airborne measurement of the temporal/spatial evolution of storm surge. Despite a 160 m variation in aircraft altitude, an 11.5 m variation in the elevation of the mean sea surface relative to the ellipsoid over the flight track, and the tidal variation over the 5 hour data acquisition interval, a survey-quality Global Positioning System (GPS) aircraft trajectory allowed the NASA Scanning Radar Altimeter carried by a NOAA hurricane research aircraft to produce storm surge measurements that generally fell between the predictions of the NOAA SLOSH model and the North Carolina State University storm surge model.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-17
    Description: On 26 August 1998, the NASA Scanning Radar Altimeter (SRA) flew aboard one of the WP-3D hurricane research aircraft to document the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC, as Bonnie, a large Category 3 hurricane, was making landfall near Wilmington, NC. Two days earlier, the SRA had documented the wave field spatial variation in open water when Hurricane Bonnie was 400 km east of Abaco Island, Bahamas. Bonnie was similar in size during the two flights, but the maximum speed in the NOAA Hurricane Research Division surface wind analysis was 15% lower prior to landfall (39 m/s) than it had been in the open ocean (46 m/s). This was compensated for by its faster movement prior to landfall (9.5 m/s) than when it was encountered in the open ocean (5 m/s). The slower movement matched the group velocity of waves of 65 m length, so waves at the peak of the spectrum outdistanced the storm as soon as they were generated. The higher translation speed prior to landfall matched the group velocity of waves of 230 m length, significantly increasing the effective fetch and duration of waves near the peak of the spectrum which propagated in the direction of the storm track. The open ocean wave height variation indicated that Hurricane Bonnie would have produced waves of 11 m significant wave height on the shore northeast of Wilmington had it not been for the continental shelf. The bathymetry distributed the steepening and breaking process across the shelf so that the wavelength and wave height were reduced gradually as the shore was approached. The wave height 5 km from shore was about 4 m.
    Keywords: Oceanography
    Type: IGARSS 2001; Jul 09, 2001 - Jul 13, 2001; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-17
    Description: The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
    Keywords: Meteorology and Climatology
    Type: 54th Interdepartmental Hurricane Conference; Feb 14, 2000 - Feb 18, 2000; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-18
    Description: The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane research aircraft at 1.5 kilometer height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. The data were acquired on 24 August 1998 when Hurricane Bonnie was 400 km east of Abaco Island, Bahamas. Individual waves with heights up to 19 meters were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At one position, three different wave systems of comparable energy and wavelength crossed each other. The aircraft spent over five hours within 180 kilometers of the Hurricane Bonnie eye and made five eye penetrations. On 26 August 1998, the SRA at 2.2 kilometer height documented the directional wave spectrum in the region between Charleston, SC, and Cape Hatteras, NC, as Hurricane Bonnie was making landfall near Wilmington, NC. The storm was similar in size during the two flights, but the maximum speed in the NOAA Hurricane Research Division surface wind analysis was 15% lower prior to landfall (39 meters per second) than it had been in the open ocean (46 meters per second). This was compensated for by its faster movement prior to landfall (9.5 meters per second) than when it was encountered in the open ocean (5 meters per second), significantly increasing the effective fetch and duration of waves near the peak of the spectrum which propagated in the direction of the storm track. The open ocean wave height variation indicated that Hurricane Bonnie would have produced waves of 11 meters significant wave height on the shore northeast of Wilmington had it not been for the continental shelf. The bathymetry distributed the steepening and breaking process across the shelf so that the wavelength and wave height were reduced gradually as the shore was approached. The wave height 5 kilometers from shore was about 4 meters.
    Keywords: Meteorology and Climatology
    Type: Oceanogr. Scientific Conference; Apr 03, 2001 - Apr 05, 2001; Miami, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-18
    Description: On 26 August 1998, the SRA at 2.2 km height documented the directional wave spectrum in the region between Charleston, SC, and Cape Hatteras, NC, as Hurricane Bonnie was making landfall near Wilmington, NC. The storm was similar in size during the two flights, but the maximum speed in the NOAA Hurricane Research Division surface wind analysis was 15% lower prior to landfall (39 m/s) than it had been in the open ocean (46 m/s). This was compensated for by its faster movement prior to landfall (9.5 m/s) than when it was encountered in the open ocean (5 m/s), significantly increasing the effective fetch and duration of waves near the peak of the spectrum which propagated in the direction of the storm track. The open ocean wave height variation indicated that Hurricane Bonnie would have produced waves of 11 m significant wave height on the shore northeast of Wilmington had it not been for the continental shelf. The bathymetry distributed the steepening and breaking process across the shelf so that the wavelength and wave height were reduced gradually as the shore was approached. The wave height 5 km from shore was about 4 in.
    Keywords: Meteorology and Climatology
    Type: 55th Interdepartmental Hurricane Conference; Mar 05, 2001 - Mar 09, 2001; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...