ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Gas-exchange measurements on Eucalyptus grandis leaves and data extracted from the literature were used to test a semi-empirical model of stomatal conductance for CO2gSc=go+a1A/(cs-I) (1+Ds/Do)]where A is the assimilation rate; Ds and cs are the humidity deficit and the CO2 concentration at the leaf surface, respectively; g0 is the conductance as A → 0 when leaf irradiance → 0; and D0 and a1 are empirical coefficients. This model is a modified version of gsc=a1A hs/cs first proposed by Ball, Woodrow & Berry (1987, in Progress in Photosynthesis Research, Martinus Mijhoff, Publ., pp. 221–224), in which hs is relative humidity. Inclusion of the CO2 compensation point, τ, improved the behaviour of the model at low values of cs, while a hyperbolic function of Ds for humidity response correctly accounted for the observed hyperbolic and linear variation of gsc and ci/cs as a function of Ds, where Ci is the intercellular CO2 concentration. In contrast, use of relative humidity as the humidity variable led to predictions of a linear decrease in gsc and a hyperbolic variation in ci/cs as a function of Ds, contrary to data from E. grandis leaves. The revised model also successfully described the response of stomata to variations in A, Ds and cs for published responses of the leaves of several other species. Coupling of the revised stomatal model with a biochemical model for photosynthesis of C3 plants synthesizes many of the observed responses of leaves to light, humidity deficit, leaf temperature and CO2 concentration. Best results are obtained for well-watered plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-1939
    Keywords: Eucalyptus grandis ; Photosynthesis modelling ; Canopy light climate ; Nitrogen use efficiency ; Light use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A simulation model for radiation absorption and photosynthesis was used to test the hypothesis that observed nonuniform distributions of nitrogen concentrations in young Eucalyptus grandis trees result in greater amounts of daily assimilation than in hypothetical trees with uniform N distributions. Simulations were performed for trees aged 6, 9, 12 and 16 months which had been grown in plantations under a factorial combination of two levels of fertilization and irrigation. Observed leaf N distribution patterns yielded daily assimilation rates which were only marginally greater (〈5%) than for hypothetical trees with uniform distributions. Patterns of assimilation distribution in individual tree crowns closely resembled those for absorbed radiation, rather than for N. These conclusions were unaffected by three choices of alternative leaf area density distributions. The simulation model was also used to calculate hourly and daily rates of canopy assimilation to investigate the relative importance of radiation absorption and total canopy nitrogen on assimilation. Simulated hourly rates of carbon assimilation were often lightsaturated, whereas daily carbon gain was directly proportional to radiation absorbed by the tree crown and to total mass of N in the leaves. Leaf nitrogen concentrations determined photosynthetic capacity, whereas total leaf area determined the amount of radiation absorbed and thus the degree to which capacity was realized. Observed total leaf area and total crown N were closely correlated. The model predicted that nitrogen use efficiences (NUE, mol CO2 mol−1 N) were 60% higher for unfertilized than for fertilized trees at low levels of absorbed photosynthetically active radiation (PAR). Nitrogen use efficiency was dependent on fertilizer treatment and on the amount of absorbed PAR; NUE declined with increasing absorbed PAR, but decreased more rapidly for unfertilized than for fertilized trees. Annual primary productivity was linearly related to both radiation absorbed and to mass of N in the canopy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 95 (1993), S. 153-163 
    ISSN: 1432-1939
    Keywords: Evaporation ; Aerodynamic conductance ; Canopy conductance ; Humidity response ; Soil water
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Canopy-scale evaporation rate (E) and derived surface and aerodynamic conductances for the transfer of water vapour (gs and ga, respectively) are reviewed for coniferous forests and grasslands. Despite the extremes of canopy structure, the two vegetation types have similar maximum hourly evaporation rates (E max) and maximum surface conductances (gsmax) (medians = 0.46 mm h-1 and 22 mm s-1). However, on a daily basis, median E max of coniferous forest (4.0 mm d-1) is significantly lower than that of grassland (4.6 mm d-1). Additionally, a representative value of ga for coniferous forest (200 mm s-1) is an order of magnitude more than the corresponding value for grassland (25 mm s-1). The proportional sensitivity of E, calculated by the Penman-Monteith equation, to changes in gs is 〉0.7 for coniferous forest, but as low as 0.3 for grassland. The proportional sensitivity of E to changes in ga is generally ±0.15 or less. Boundary-line relationships between gs and light and air saturation deficit (D) vary considerably. Attainment of gsmax occurs at a much lower irradiance for coniferous forest than for grassland (15 versus about 45% of full sunlight). Relationships between gs and D measured above the canopy appear to be fairly uniform for coniferous forest, but are variable for grassland. More uniform relationships may be found for surfaces with relatively small ga, like grassland, by using D at the evaporating surface (D0) as the independent variable rather than D at a reference point above the surface. An analytical expression is given for determining D0 from measurable quantities. Evaporation rate also depends on the availability of water in the root zone. Below a critical value of soil water storage, the ratio of evaporation rate to the available energy tends to decrease sharply and linearly with decreasing soil water content. At the lowest value of soil water content, this ratio declines by up to a factor of 4 from the non-soil-water-limiting plateau. Knowledge about functional rooting depth of different plant species remains rather limited. Ignorance of this important variable makes it generally difficult to obtain accurate estimates of seasonal evaporation from terrestrial ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 88 (1991), S. 504-510 
    ISSN: 1432-1939
    Keywords: Eucalyptus grandis ; Canopy ; N and P distributions ; Photosynthesis-nitrogen response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Eucalyptus grandis trees were grown in plantations with and without added fertiliser to examine the effects of plant nutrition on photosynthesis and growth. Leaves were sampled from known locations within canopies of selected trees and leaf N and P concentrations were measured. Contour maps of N and P distributions were then produced for crowns of trees aged between 6 and 16 months. Gas exchange measurements on sample leaves were used to estimate parameters of a model of C3 photosynthesis as a function of leaf N and P contentrations. Linear relationships were obtained between model parameters and leaf N concentration, but P appeared to be present in excess, since no correlation was found with P contentration. Photosynthetic light response curves were calculated for model leaves with differing N concentrations. The curves show that optimal concentrations of N in leaves depend on mean levels of irradiance during growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1573-1472
    Keywords: Source/sink distributions ; Lagrangian dispersion ; Canopy models ; Canopy distributions ; Atmospheric stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Source/sink distributions of heat, water vapour andCO2 within a rice canopy were inferred using aninverse Lagrangian dispersion analysis and measuredmean profiles of temperature, specific humidity andCO2 mixing ratio. Monin–Obukhov similarity theorywas used to account for the effects of atmosphericstability on σw(z), the standard deviation ofvertical velocity and τL(z), the Lagrangian timescale of the turbulence. Classical surface layer scaling was applied in the inertial sublayer (z 〉 zruf)using the similarity parameter ζ = (z - d)/L, where z is height above ground, d is the zero plane displacementheight for momentum, L is the Obukhov length,and zruf ≈ 2.3hc, where hc iscanopy height. A single length scale hc, was usedfor the stability parameter 3 = hc/L in the height range 0.25 〈 z/hc 〈 2.5. This choice is justified by mixing layer theory, which shows that within the roughness sublayer there is one dominant turbulence length scaledetermined by the degree of inflection in the windprofile at the canopy top. In the absence of theoretical or experimental evidence for guidance,standard Monin–Obukhov similarity functions, withζ = hc/L, were used to calculate the stabilitydependence of σw(z) and τL(z) in the roughness sublayer. For z/hc 〈 0.25 the turbulence length and time scales are influenced by the presence of the lowersurface, and stability effects are minimal. With theseassumptions there was excellent agreement between eddycovariance flux measurements and deductions from theinverse Lagrangian analysis. Stability correctionswere particularly necessary for night time fluxes whenthe atmosphere was stably stratified. The inverse Lagrangian analysis provides a useful toolfor testing and refining multilayer canopy models usedto predict radiation absorption, energy partitioningand CO2 exchanges within the canopy and at thesoil surface. Comparison of model predictions withsource strengths deduced from the inverse analysisgave good results. Observed discrepancies may be dueto incorrect specification of the turbulent timescales and vertical velocity fluctuations close to theground. Further investigation of turbulencecharacteristics within plant canopies is required toresolve these issues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 23 (1982), S. 209-222 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= ρ cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux ρ′ c w′. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., ρ′ c w′ = −ρ c w. Corrections for the mean convective flux are particularly significant for CO2 because ρ cw and ρ′ c w′ are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Methods of calibrating infrared CO2 analysers for sensitivity to CO2 and water vapour are described. Equations to correct eddy covariance CO2 flux measurements are presented for: (i) analyser cross-sensitivity to water vapour and the effects of density fluctuations arising from atmospheric fluxes of water vapour and sensible heat, (ii) flux losses caused by signal processing and limited instrument frequency response for open- and closed-path CO2 analysers, and (iii) flux losses resulting from damping of concentration fluctuations in a tube used to sample air for closed-path CO2 analysers. Examples of flux corrections required for typical instruments are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 23 (1982), S. 255-258 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 20 (1981), S. 445-457 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract An anemometer based upon measurement of the tangential windspeed around a sphere with hot-film probes is described. The anemometer determined the windspeed with a root-mean-square (rms) error of 5%, and the direction with an rms error of 5.6 °. A comparison between omnidirectional and sonic anemometers in the field gave practically identical results for the vertical sensible heat flux using eddy correlation procedures. Other turbulence statistics are also reported. The new instrument should be useful for measurements in canopies, where turbulence intensities are often large.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 59 (1992), S. 297-311 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Eddy fluxes of CO2 estimated using a sonic anemometer and a closed-path analyser were, on average, 16% lower than those obtained with the same anemometer and an adjacent open-path CO2 analyser. Covariances between vertical windspeed and CO2 density from the closed-path analyser were calculated using data points for CO2 that were delayed relative to anemometer data by the time required for a parcel of air to travel from the tube inlet to the CO2 sensor. Air flow in the intake tube was laminar. Densities of CO2 that had been corrected for spurious fluctuations arising from fluctuations in temperature and humidity were used in the flux calculations. Corrections for the cross-sensitivity of CO2 analysers to water vapour were also incorporated. Spectral analysis of the corrected CO2 signal from the closed-path analyser showed that damping of fluctuations in the sampling tube at frequencies f 〉 0.1 Hz caused the apparent loss in flux. The measured losses can be predicted accurately using theory that describes the damping of oscillations in a sampling tube. High-frequency response of the closed-path system can be improved substantially by ensuring turbulent flow in the tube, using a combination of high volumetric flow rate and small tube diameter. The analysis of attenuation of turbulent fluctuations in flow through tubes is applicable to the measurement of fluxes of other minor atmospheric constituents using the eddy covariance method.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...