ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers for Young Minds, 7 (96).
    Publication Date: 2019-07-22
    Description: All around the world, beneath the seafloor, there are huge volumes of natural gas. But these are not the normal gas reservoirs that we collect to use for cooking, heating our homes, and making electricity in power stations. This gas is locked up in what we call gas hydrates. Gas hydrates are a solid form of water, rather like ice, that contains gas molecules locked up in a “cage” of water molecules. Gas hydrates are found on continental shelves around the world and in permafrost in the arctic. We are interested in gas hydrates because they could be used as a future source of natural gas. They are also important because they can cause large landslides on the seafloor, damaging offshore pipelines and cables and contributing to the formation of tsunami waves.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  Science Trends .
    Publication Date: 2020-01-09
    Description: These findings are described in the article entitled Investigating a gas hydrate system in apparent disequilibrium in the Danube Fan, Black Sea, recently published in the journal Earth and Planetary Science Letters (Earth and Planetary Science Letters 502 (2018) 1-11). This work was conducted by Jess I.T. Hillman, Ewa Burwicz, Timo Zander, Joerg Bialas, and Ingo Klaucke from GEOMAR Helmholtz Centre for Ocean Research, and Howard Feldman, Tina Drexler, and David Awwiller from the ExxonMobil Upstream Research Company.
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers for Young Minds, 7 (Article 25).
    Publication Date: 2020-01-02
    Description: Did you know that we have better maps of the moon, Mars, and Venus than we do of the seafloor on Earth? Since oceans cover 71% of the Earth’s surface, understanding what the seafloor looks like, and where different processes, such as ocean currents are active, is hugely important. Mapping the seafloor helps us to work out things like where different types of fish live, where we might find resources, such as rare metals and fossil fuels, and whether there is a risk of underwater landslides happening that might cause a tsunami. Mapping the seafloor is very challenging, because we cannot use the same techniques that we would use on land. To map the deep ocean, we use a tool called a multibeam echo-sounder, which is attached to a ship or a submarine vessel.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-02-08
    Description: Highlights • BSR position does not match BGHS as predicted based on regional TP conditions. • Use steady state and transient models to determine extent of hydrate stability. • Investigate the influence of topographic focusing on hydrate stability. • Variable thermal properties of sediment impact hydrate stability. The Danube Fan in the western Black Sea shows many features indicating the presence of gas and gas hydrates, including a bottom simulating reflection (BSR), high-amplitude anomalies beneath the BSR and the presence of gas flares at the seafloor. The BSR depth derived from 3D P-cable seismic data of an older slope canyon of the fan (the S2 canyon) suggests that the BSR is not in equilibrium with the present-day topography. The Danube Fan was abandoned ∼7.5 ka, and the S2 canyon was likely incised ∼20 ka, suggesting that the gas hydrate system has had at least 7.5 ka years to equilibrate to the present-day conditions. Here we examine the extent and position of the hydrate stability zone through constructing both steady and transient state models of a 2D profile across the S2 canyon. This was done using inputs from mapping of the 3D P-cable seismic data and geochemical analysis of core samples. Using these models, we investigate the effects of different factors including variable thermal properties of heterogeneous sediments in the vicinity of the canyon and, topographic focusing on the geothermal gradient on the extent of the hydrate stability zone. Our results indicate that both factors have a significant effect and that the hydrate system may actually be in, or approaching equilibrium.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-02-06
    Description: Highlights • Propose that all BSRs are in fact discontinuous in nature. • Challenge the commonly accepted textbook definition of a BSR. • Acquisition geometry and frequency content significantly impact imaging of BSRs. • Frequency content of seismic data is a key factor in characterizing gas hydrates. • Present precise maps of discontinuous BSRs, not just areal extent. Abstract Bottom-simulating reflections (BSRs) identified in seismic data are well documented; and are commonly interpreted to indicate the presence of gas hydrates along continental margins, as well as to estimate regional volumes of gas hydrate. A BSR is defined as a reflection that sub-parallels the seafloor but is opposite in polarity and cross-cuts dipping sedimentary strata. BSRs form as a result of a strong negative acoustic impedance contrast. BSRs, however, are a diverse seismic phenomena that manifest in strikingly contrasting ways in different geological settings, and in different seismic data types. We investigate the characteristics of BSRs, using conventional and high resolution, 2D and 3D seismic data sets in three locations: the Terrebonne and Orca Basins in the Gulf of Mexico, and Blake Ridge on the US Atlantic Margin. The acquisition geometry and frequency content of the seismic data significantly impact the resultant character of BSRs, as observed with depth and amplitude maps of the BSRs. Furthermore, our amplitude maps reinforce the concept that the BSR represents a zone, over which the transition from hydrate to free gas occurs, as opposed to the conventional model of the BSR occurring at a single interface. Our results show that a BSR can be mapped in three dimensions but it is not spatially continuous, at least not at the basin scale. Rather, a BSR manifests itself as a discontinuous, or patchy, reflection and only at local scales is it continuous. We suggest the discontinuous nature of BSRs is the result of variable saturation and distribution of free gas and hydrate, acquisition geometry and frequency content of the recorded seismic data. The commonly accepted definition of a BSR should be broadened with careful consideration of these factors, to represent the uppermost extent of enhanced amplitude at the shallowest occurrence of free gas trapped by overlying hydrate-bearing sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-12-12
    Description: Highlights • Geostatistical analysis methods applied to multibeam bathymetry and seismic data • Geomorphology of seafloor depressions has been quantitatively characterised. • No direct correlation between gas venting and formation of seafloor depressions • Likely mechanism of depression formation: groundwater flux linked to current flow Abstract Seafloor depressions are widespread on the present-day continental slope along the southeast coast of New Zealand's South Island. The depressions appear to be bathymetrically constrained to depths below 500 m, correlating to the top of the gas hydrate stability zone, and above 1100 m. Similar depressions observed on the Chatham Rise are interpreted to have formed as a result of gas hydrate dissociation, leading to the hypothesis that a similar origin can be applied for the depressions investigated in this study. Our investigation, however, has found limited geophysical or geochemical evidence to support this hypothesis. The objective of this paper is to examine whether a causal relationship can be established between potential mechanisms of depression formation and the present-day seafloor geomorphology. Geostatistical analysis methods applied to multibeam bathymetry and interpretation of 3D seismic data have been used to empirically describe the geomorphology of the seafloor depressions and investigate potential correlations between geomorphology and other processes such as current flow along the shelf and slope in this region and underlying polygonal fault systems. Although the results of our analysis do not preclude that the seafloor depressions formed as a result of gas hydrate dissociation, neither does our geophysical or geochemical evidence support the theory. Therefore, we propose an alternative mechanism that may have been responsible for the formation of these structures. Based on the evidence presented in this study, the most likely mechanism responsible for the formation of these seafloor depressions is groundwater flux related to the interaction of current systems and the complex geomorphology of submarine canyons on the southeast coast of the South Island.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-09-23
    Description: Leg A SO251-1, Yokohama - Yokohama, 04.10.2016 - 15.10.2016, Leg B SO251-2, Yokohama - Yokohama, 18.10.2016 - 02.11.2016
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-02-08
    Description: The Hikurangi Margin off the east coast of the North Island (Te Ika-a-Māui) is a tectonically active subduction zone and the location of New Zealand’s largest gas hydrate province. Faults are internally complex volumetric zones that may play a significant role in the migration of fluids beneath the seafloor. The combined processes of deformation and fluid migration result in the formation of concentrated hydrate accumulations along accretionary ridges. It is not fully understood to what extent faults control fluid migration along the Hikurangi Margin, and whether deep-seated thrust faults provide a pathway for thermogenic gas to migrate up from sources at depth. Using 2D models based on seismic data from the region we investigated the role of thrust faults in facilitating fluid migration and contributing to the formation of concentrated gas hydrates. By altering permeability properties of the fault zones in these transient state models we can determine whether faults are required to act as fluid flow pathways. In this study we focus on two study sites offshore southern Wairarapa, using realistic yet simplified fault geometries derived from 2D seismic lines. The results of these models allow us to start to disentangle the complex relationship between fault zone structure, permeability, geometry, fluid migration and gas hydrate formation. Based on the model outputs we propose that faults act as primary pathways facilitating fluid migration and are critical in the formation of concentrated gas hydrate deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-02-08
    Description: Highlights • There is direct and indirect evidence for hydrate occurrence in several areas around Europe. • Hydrate is particularly widespread offshore Norway and Svalbard and in the Black Sea. • Hydrate occurrence often coincides with conventional thermogenic hydrocarbon provinces. • The regional abundance of hydrate in Europe is poorly known. Abstract Large national programs in the United States and several Asian countries have defined and characterised their marine methane hydrate occurrences in some detail, but European hydrate occurrence has received less attention. The European Union-funded project “Marine gas hydrate – an indigenous resource of natural gas for Europe” (MIGRATE) aimed to determine the European potential inventory of exploitable gas hydrate, to assess current technologies for their production, and to evaluate the associated risks. We present a synthesis of results from a MIGRATE working group that focused on the definition and assessment of hydrate in Europe. Our review includes the western and eastern margins of Greenland, the Barents Sea and onshore and offshore Svalbard, the Atlantic margin of Europe, extending south to the northwestern margin of Morocco, the Mediterranean Sea, the Sea of Marmara, and the western and southern margins of the Black Sea. We have not attempted to cover the high Arctic, the Russian, Ukrainian and Georgian sectors of the Black Sea, or overseas territories of European nations. Following a formalised process, we defined a range of indicators of hydrate presence based on geophysical, geochemical and geological data. Our study was framed by the constraint of the hydrate stability field in European seas. Direct hydrate indicators included sampling of hydrate; the presence of bottom simulating reflectors in seismic reflection profiles; gas seepage into the ocean; and chlorinity anomalies in sediment cores. Indirect indicators included geophysical survey evidence for seismic velocity and/or resistivity anomalies, seismic reflectivity anomalies or subsurface gas escape structures; various seabed features associated with gas escape, and the presence of an underlying conventional petroleum system. We used these indicators to develop a database of hydrate occurrence across Europe. We identified a series of regions where there is substantial evidence for hydrate occurrence (some areas offshore Greenland, offshore west Svalbard, the Barents Sea, the mid-Norwegian margin, the Gulf of Cadiz, parts of the eastern Mediterranean, the Sea of Marmara and the Black Sea) and regions where the evidence is more tenuous (other areas offshore Greenland and of the eastern Mediterranean, onshore Svalbard, offshore Ireland and offshore northwest Iberia). We provide an overview of the evidence for hydrate occurrence in each of these regions. We conclude that around Europe, areas with strong evidence for the presence of hydrate commonly coincide with conventional thermogenic hydrocarbon provinces.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-02-08
    Description: Highlights • Recently acquired high-resolution seismic data and existing low-resolution industry data are presented. • Two large concentrated hydrate deposits are identified beneath Glendhu and Honeycomb ridges. • A novel method involving analysis of seismic velocity and reflectivity is used to obtain estimates of hydrate saturations. • Hydrate saturations peaks of 〉80% are estimated locally. • The main driving mechanism for hydrate accumulations is inferred to be along-strata gas migration. Abstract In the southern Hikurangi subduction margin, widespread gas hydrate accumulations are inferred based on the presence of bottom simulating reflections and recovered gas hydrate samples, mainly associated with thrust ridges. We present a detailed analysis of high- and medium-resolution seismic reflection data across Glendhu and Honeycomb ridges, two elongated four-way closure systems at the toe of the deformation wedge. High-amplitude reflections within the gas hydrate stability zone, coincident with high seismic velocities, suggest the presence of highly concentrated gas hydrate accumulations in the core regions of the anticlinal ridges. A novel method involving combined seismic velocity and reflectivity analysis and rock physics modelling is used to estimate hydrate saturations in localised areas. The effective medium model consistently predicts gas hydrate saturations of ~30% of the pore space at Glendhu Ridge and 〉60% at Honeycomb Ridge, whereas the empirical three-phases weighted equation likely underestimates the amount of gas hydrate present. We note that our estimates are dependent on the vertical resolution of the seismic data (5–14 m), and that the existence of thin layers hosting gas hydrate at higher concentrations is likely based on observations made elsewhere in similar depositional environments. A comparison between the two ridges provides insights into the evolution of thrust related anticlines at the toe of the accretionary wedge. We propose that the main driving mechanism for concentrated hydrate accumulation in the study area is along-strata gas migration. The vertical extent of these accumulations is a function of the steepness of the strata crossing the base of gas hydrate stability, and of the volume of sediments from which fluid flows into each structure. According to our interpretation, older structures situated further landward ofthe deformation front are more likely to host more extensive concentrated hydrate deposits than younger ridges situated at the deformation front and characterised by more gentle folding. The method introduced in this work is useful to retrieve quantitative estimates of gas hydrate saturations based on multi-channel seismic data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...