ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 11
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-01-11
    Description: Benthic foraminifera have been used as proxies for the prevailing conditions at the sediment–water interface. Their distribution patterns are thought to facilitate reconstruction of past environmental conditions. Variations of bottom water oxygenation can be traced by the downcore distribution of benthic foraminifera and some of their morphological characters. Being one of the strongest and most pronounced OMZs in today’s world oceans, the Peruvian OMZ is a key area to study such variations in relation with changing climate. Spatial changes or an extension of the OMZ through time and space are investigated using sediment cores from the lower OMZ boundary. We focus on time intervals Late Holocene, Early Holocene, Bølling Allerød, Heinrich-Stadial 1 and Last Glacial Maximum (LGM) to investigate changes in bottom-water oxygen and redox conditions. The recent distributions of benthic foraminiferal assemblages provide background data for an interpretation of the past conditions. Living benthic foraminiferal faunas from the Peruvian margin are structured with the prevailing bottom-water oxygen concentrations today (Mallon et al., 2012). Downcore distribution of benthic foraminiferal assemblages showed fluctuations in the abundance of the indicator species depicting variations and a decreasing trend in bottom water oxygen conditions since the LGM. In addition, changes in bottom-water oxygen and nitrate concentrations are reconstructed for the same time intervals by the pore density in tests of Planulina limbata and Bolivina spissa (Glock et al., 2011), respectively. The pore densities also indicate a trend of higher oxygen and nitrate concentrations in the LGM compared to the Holocene. Combination of both proxies provide information on past bottom-water conditions and changes of oxygen concentrations for the Peruvian margin. Glock et al., 2011: Environmental influences on the pore density of Bolivina spissa (Cushman), Journal of Foraminiferal Research, v. 41, no. 1, p. 22–32. Mallon et al., 2012: The response of benthic foraminifera to low-oxygen conditions of the Peruvian oxygen minimum zone, in ANOXIA, pp.305-322.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-09-23
    Description: Highlights • Review of sediment archives from the Peruvian margin since the LGM. • Focus on the evolutionary feature of the hiatus found in archives. • Modern analogue for current-dominated environments for paleo reconstructions. • New results for erosional potential of the non-linear internal waves (NLIWs). Abstract The Peruvian continental margin is characterized by the presence of one of the strongest and most distinct Oxygen Minimum Zones (OMZs) in today's oceans. Therefore, it has long been in the focus of oceanographic and geological investigations. Observations indicate that OMZs are expanding in relation with currently changing climate. To advance understanding of the temporal evolution of OMZs and climate change, complete paleoceanographic and palaeoclimatological reconstructions are needed. However, the development of paleoenvironmental scenarios for the period since the Last Glacial Maximum at this region was hampered by a ubiquitous hiatus and short-term interruptions of the stratigraphical record. In the present study, we combined the stratigraphical information from 31 sediment cores from the Peruvian margin located between 3 and 18°S and water depths of 90 to 1300 m within and below today's OMZ, in order to determine the extent of the hiatus and assess the responsible mechanisms. A widespread unconformity and related erosional features, omission surfaces and phosphorites, were observed in sediment cores from the area south of 7°S, depicting a prograding feature on the continental slope from south to north during the deglaciation. Combining recent oceanographic and sedimentological observations, it is inferred that, tide-topography interaction and resulting non-linear internal waves (NLIWs) shape the slope by erosion, carry sediments upslope or downslope and leave widespread phosphoritic lag sediments, while the Peru Chile Undercurrent (PCUC) transports the resuspended sediments southward causing non-deposition. This exceptional sedimentary regime makes the Peruvian margin a modern analogue for such environments. Overall, our compilation of downcore records showed that enhanced bottom currents due to tide-topography interaction were progressively evolving and affected a wider area with the onset of the last deglaciation. Elevated tidal amplitudes and variability of mid-depth water masses (i.e.; density changes) and hydrodynamics in relation with changing climate were potential reasons of this evolving feature of erosion and reworking. Additionally, erosion and non-deposition was observed widest and even was encountered on the continental shelf during the early Holocene, potentially indicating a strong phase of the PCUC mirroring today's El Niño-like conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-09-23
    Description: Present day oceans are well ventilated, with the exception of mid-depth oxygen minimum zones (OMZs) under high surface water productivity, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or anoxic. The Cretaceous ocean anoxic events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossils preserved in the sedimentary record. Yet assessments of the intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life have been studied thoroughly. Their implications for constraining past bottom-water oxygenation are addressed in this review. We compared OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the north-west African shelf. Holocene laminated sediments are encountered at bottom-water oxygen levels of 〈 7 μmol kg−1 under the Peruvian upwelling and 〈 5 μmol kg−1 in California Borderland basins and the Pakistan Margin. Seasonal to decadal changes of sediment input are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 μmol kg−1. Chondrites has not been reported in Peruvian sediments but centimetre-sized crab burrows appeared around 10 μmol kg−1, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation rates ranged from 0.7 and 2.8 g C cm−2 kyr−1 in laminated OAE 2 sections in Tarfaya Basin, Morocco, matching late Holocene accumulation rates of laminated Peruvian sediments under Recent oxygen levels below 5 μmol kg−1. Sediments deposited at 〉 10 μmol kg−1 showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In the absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of palaeo-oxygenation. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  [Poster] In: The Micropalaeontological Society's Foraminifera and Nannofossil Groups Joint Spring Meeting 2015, 14-18.06.2015, Plymouth, UK .
    Publication Date: 2019-09-23
    Description: The Peruvian Oxygen Minimum Zone (OMZ) is one of the strongest and most pronounced OMZs in today’s world oceans and thus is a key area to understand changing redox conditions in relation with changing climate. Vertical and horizontal changes or an extension of the OMZ through time and space are investigated using a sediment core from the lower OMZ boundary. This core has a complete record since the Last Glacial Maximum. We focus on time intervals Late Holocene, Early Holocene, Bølling Allerød, Heinrich-Stadial 1 and Last Glacial Maximum to investigate changes in bottom-water oxygen conditions by using benthic foraminiferal assemblages. Living benthic foraminiferal faunas are structured with the prevailing bottom-water oxygen concentrations today (Mallon et al., 2012). Bolivina species are frequent at the most oxygen-depleted conditions. Cassidulina and Uvigerina species dominate the faunas under higher oxygen concentrations. Downcore distribution of benthic foraminiferal assemblages showed fluctuations in the abundance of the indicator species depicting variations in past bottom-water oxygenation. In addition, changes in bottom-water nitrate concentrations are reconstructed by using the pore density in tests of Bolivina spissa (Glock et al., 2011) for the same time intervals. Combination of both proxies will provide information on past bottom-water conditions and changes of oxygen concentrations for the Peruvian margin.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-09-23
    Description: In this study we present an initial dataset of Mn/Ca and Fe/Ca ratios in tests of benthic foraminifera from the Peruvian oxygen minimum zone (OMZ) determined with SIMS. These results are a contribution to a better understanding of the proxy potential of these elemental ratios for ambient redox conditions. Foraminiferal tests are often contaminated by diagenetic coatings, like Mn rich carbonate- or Fe and Mn rich (oxyhydr)oxide coatings. Thus, it is substantial to assure that the cleaning protocols are efficient or that spots chosen for microanalyses are free of contaminants. Prior to the determination of the element/Ca ratios, the distributions of several elements (Ca, Mn, Fe, Mg, Ba, Al, Si, P and S) in tests of the shallow infaunal species Uvigerina peregrina and Bolivina spissa were mapped with an electron microprobe (EMP). To visualize the effects of cleaning protocols uncleaned and cleaned specimens were compared. The cleaning protocol included an oxidative cleaning step. An Fe rich phase was found on the inner test surface of uncleaned U. peregrina specimens. This phase was also enriched in Al, Si, P and S. A similar Fe rich phase was found at the inner test surface of B. spissa. Specimens of both species treated with oxidative cleaning show the absence of this phase. Neither in B. spissa nor in U. peregrina were any hints found for diagenetic (oxyhydr)oxide or carbonate coatings. Mn/Ca and Fe/Ca ratios of single specimens of B. spissa from different locations have been determined by secondary ion mass spectrometry (SIMS). Bulk analyses using solution ICP-MS of several samples were compared to the SIMS data. The difference between SIMS analyses and ICP-MS bulk analyses from the same sampling sites was 14.0–134.8 μmol mol−1 for the Fe/Ca and 1.68(±0.41) μmol mol−1 for the Mn/Ca ratios. This is in the same order of magnitude as the variability inside single specimens determined with SIMS at these sampling sites (1σ[Mn/Ca] = 0.35–2.07 μmol mol−1; 1σ[Fe/Ca] = 93.9–188.4 μmol mol−1). The Mn/Ca ratios in the calcite were generally relatively low (2.21–9.93 μmol mol−1) but in the same magnitude and proportional to the surrounding pore waters (1.37–6.67 μmol mol−1). However, the Fe/Ca ratios in B. spissa show a negative correlation to the concentrations in the surrounding pore waters. Lowest foraminiferal Fe/Ca ratios (87.0–101.0 μmol mol−1) were found at 465 m water depth, a location with a strong sharp Fe peak in the pore water next to the sediment surface and respectively, high Fe concentrations in the surrounding pore waters. Previous studies found no living specimens of B. spissa at this location. All these facts hint that the analysed specimens already were dead before the Fe flux started and the sampling site just recently turned anoxic due to fluctuations of the lower boundary of the OMZ near the sampling site (465 m water depth). Summarized Mn/Ca and Fe/Ca ratios are potential proxies for redox conditions, if cleaning protocols are carefully applied. The data presented here may be rated as base for the still pending detailed calibration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-09-23
    Description: The discovery that foraminifera are able to use nitrate instead of oxygen as energy source for their metabolism has challenged our understanding of nitrogen cycling in the ocean. It was evident before that only prokaryotes and fungi are able to denitrify. Rate 5 estimates of foraminiferal denitrification were very sparse on a regional scale. Here, we present estimates of benthic foraminiferal denitrification rates from six stations at intermediate water depths in and below the Peruvian oxygen minimum zone (OMZ). Foraminiferal denitrification rates were calculated from abundance and assemblage composition of the total living fauna in both, surface and subsurface sediments, 10 as well as from individual species specific denitrification rates. A comparison with total benthic denitrification rates as inferred by biogeochemical models revealed that benthic foraminifera account for the total denitrification on the shelf between 80 and 250m water depth. They are still important denitrifiers in the centre of the OMZ around 320m (29–56% of the benthic denitrification) but play only a minor role at the lower OMZ 15 boundary and below the OMZ between 465 and 700m (3–7% of total benthic denitrification). Furthermore, foraminiferal denitrification was compared to the total benthic nitrate loss measured during benthic chamber experiments. Foraminiferal denitrification contributes 1 to 50% to the total nitrate loss across a depth transect from 80 to 700 m, respectively. Flux rate estimates ranged from 0.01 to 1.3 mmolm−2 d−1. Fur20 thermore we show that the amount of nitrate stored in living benthic foraminifera (3 to 705 μmolL−1) can be higher by three orders of magnitude as compared to the ambient pore waters in near surface sediments sustaining an important nitrate reservoir in Peruvian OMZ sediments. The substantial contribution of foraminiferal nitrate respiration to total benthic nitrate loss at the Peruvian margin, which is one of the main nitrate sink 25 regions in the world oceans, underpins the importance of previously underestimated role of benthic foraminifera in global biochemical cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, XI, 121 pp
    Publication Date: 2019-09-23
    Description: Determination of the pore density in Bolivina spissa from the Peruvian oxygen minimum zone in respect to oxygen and nitrate availability. First applications of the pore dansity as an environmental proxy. Analysis of the redox sensitive elements manganese and iron in foraminiferal calcite from the Peruvian oxygen minimum zone in respect to redox conditions with ICP-MS and SIMS
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Springer
    In:  In: ANOXIA : Evidence for Eukaryote Survival and Paleontological Strategies. , ed. by Altenbach, A. V., Bernhard, J. M. and Seckbach, J. Cellular Origin, Life in Extreme Habitats and Astrobiology, 21 . Springer, Dordrecht, The Netherlands, pp. 305-322. ISBN 978-94-007-1895-1
    Publication Date: 2019-09-23
    Description: Recent benthic foraminifera and their distribution in surface sediments were studied on a transect through the Peruvian oxygen minimum zone (OMZ) between 10 and 12°S. The OMZ with its steep gradients of oxygen concentrations allows to determine the oxygen-dependent changes of species compositions in a relatively small area. Our results from sediments of thirteen multicorer stations from 79 to 823 m water depth demonstrate that calcareous species, especially bolivinids dominate the assemblages throughout the OMZ. The depth distribution of several species matches distinct ranges of bottom water oxygen levels. The distribution pattern inferred a proxy which allows to estimate dissolved oxygen concentrations for reconstructing oxygen levels in the geological past.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...