ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-202-345
    In: Research report / Cold Regions Research and Engineering Laboratory, 345
    Description / Table of Contents: CONTENTS: Abstract. - Preface. - List of symbols. - Introduction. - Previous work. - Experimental design. - The radioisotope 22Na. - Description of apparatus. - Experimental procedure. - Correction of profiles. - Assumptions. - Decay correction. - Boundary correction. - Error analysis. - Results. - Salinity data. - Temperature data. - Growth velocity. - Discussion. - Brine and ice properties. - Brine salinity. - Brine density. - Brine volume. - Brine latent heat of freezing. - Brine viscosity, specific heat, and thermal conductivity. - Ice properties. - Theoretical brine expulsion model. - Continuity equations. - Thermal energy equation. - Simplified brine expulsion equations. - Brine expulsion in NaCl ice. - Results. - Discussion. - Gravity drainage in NaCl ice. - Application of results to natural sea ice. - Effective distribution coefficient. - Previous work. - Experimental procedure and results. - Conclusions. - Literature cited. - Appendix A: Profile correction data. - Appendix B: Program "correct" and sample output. - Appendix C: Tabulation of salinity data. - Appendix D: Tabulation of profile data. - Appendix E: Time-ice thickness equations (Runs 2 and 3). - Appendix F: Tabulation of distribution coefficient data.
    Description / Table of Contents: To obtain a better understanding of the desalination of natural sea ice, an experimental technique was developed to measure sequential salinity profiles of a growing sodium chloride ice sheet. Using radioactive 22Na as a tracer, it was possible to determine both the concentration and movement of the brine within the ice without destroying the sample. A detailed temperature and growth history of the ice was also maintained so that the variation of the salinity profiles could be properly interpreted. Since the experimental salinity profile represented a smoothed, rather than a true salinity distribution, a deconvolution method was devised to restore the true salinity profile. This was achieved without any significant loss of end points. In all respects, the salinity profiles are similar to those of natural sea ice. They have a characteristic C-shape, and clearly exhibit the effects of brine drainage. Not knowing the rates of brine expulsion or gravity drainage, the variation of the salinity profiles during the period of ice growth could be explained by either process. To determine the relative importance of the desalination mechanisms, a theoretical brine expulsion model was derived and compared to the experimental data. As input for the model, equations describing the variation of some properties of NaCl brine with temperature were derived. These included the brine salinity, viscosity, specific heat, thermal conductivity, and latent heat of freezing. The theoretical brine expulsion model was derived by performing mass and energy balances over a control volume of NaCl ice. A simplified form of the model, when compared to the experimental results, indicated that brine expulsion was only important during the first several hours of ice growth, and later became a minor desalination process relative to gravity drainage which continued to be the dominant mechanism for the remainder of the study period (up to 6 weeks). The rate of gravity drainage was found to be dependent on the brine volume and the temperature gradient of the ice. As either the brine volume or temperature gradient was increased, the rate of change of salinity due to gravity drainage increased. The equation commonly used to calculate the effective distribution coefficient (Weeks and Lofgren 1967) was modified and improved by taking brine drainage into account. An expression was also derived to give the distribution coefficient at very low growth velocities.
    Type of Medium: Series available for loan
    Pages: vii, 85 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory 345
    Language: English
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-202-310
    In: Research report
    Description / Table of Contents: CONTENTS: Introduction. - Field sites and procedures. - Results. - Discussion. - Conclusions. - Literature cited. - Appendix A: Tabulation of AIDJEX core data. - Appendix B: Tabulation of average salinity/ice thickness data. - Abstract.
    Description / Table of Contents: The salinity distribution in multiyear sea ice is dependent on the ice topography and cannot be adequately represented by a single average profile. The cores collected from areas beneath surface hummocks generally showed a systematic increase in salinity with depth from 0 0/00 at tne surface to about 4 0/00 at the base. The cores collected from areas beneath surface depressions were much more saline and displayed large salinity fluctuations. Salinity observations from sea ice of varying thicknesses and ages collected at various arctic and subarctic locations revealed a strong correlation between the average salinity of the ice, S, and the ice thickness, h. For salinity samples collected from cold sea ice at the end of the growth season, this relationship can be represented by two linear equations: S = 14.24 - 19.39h (h? 0.4 m) ; S = 7.88 - 1.59h (h 〉 0.4 m) . It is suggested that the pronounced break in slope at 0.4 m is due to a change in the dominant brine drainage mechanism from brine expulsion to gravity drainage. A linear regression for the data collected during the melt season gives S = 1.58 + 0.18h. An annual cyclic variation of the mean salinity probably exists for multiyear sea ice. The mean salinity should reach a maximum at the end of the growth season and a minimum at the end of the melt season.
    Type of Medium: Series available for loan
    Pages: iii, 23 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory, CRREL, US Army Material Command 310
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1983-01-01
    Description: The coefficient of thermal expansion of NaCl ice and natural sea ice is theoretically shown to be equal to the coefficient of thermal expansion of pure ice.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1983-01-01
    Description: The coefficient of thermal expansion of NaCl ice and natural sea ice is theoretically shown to be equal to the coefficient of thermal expansion of pure ice.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...