ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    In:  [Talk] In: KALMAR - Second Bilateral Workshop on Russian-German Cooperation on Kurile-Kamchatka and Aleutean Marginal Sea-Island Arc Systems, 16.05.-20.05.2011, Trier . KALMAR - Kurile-Kamchatka-Aleutean Marginal Sea - Island Systems : Program and Abstracts ; Workshop in Russian-German Cooperation, May 16 - 20, 2011 Trier, Germany ; pp. 123-124 .
    Publication Date: 2020-11-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-09-23
    Description: We measured oxygen isotope compositions of 34 adakites, high-Mg andesites, and lavas suspected to contain abundant slab and sediment melts from the Western and Central Aleutians, the Andes, Panama, Fiji, Kamchatka, Setouchi (Japan), and the Cascades. This suite covers much of the diversity of arc lavas previously hypothesized to contain abundant ‘slab’ melts. Measured and calculated values of δ18O for olivine phenocrysts in these samples vary between 4.88‰ and 6.78‰, corresponding to calculated melt values of 6.36‰ to 8.17‰. Values of δ18O for these samples are correlated with other geochemical parameters having petrogenetic significance, including Sr/Y, La/Yb, 87Sr/86Sr, and 143Nd/144Nd. Archetypical adakites from Adak Island (Central Aleutian) and Cook Island (Andean Austral zone), previously interpreted to be nearly pure melts of basaltic and gabbroic rocks in subducting slabs, have values of δ18O slightly higher than those of normal mid-ocean-ridge basalts, and in oxygen isotope equilibrium with typical mantle peridotite (i.e., their subtle 18O enrichment reflects their Si-rich compositions and low liquidus temperatures, not 18O-rich sources). Other primitive adakites from Panama and Fiji show only subtle sub-per mil enrichments in the source. This finding appears to rule out the hypothesis that end-member adakites are unmodified partial melts of basaltic rocks and/or sediments in the top (upper 1–2 km) of the subducted slab, which typically have δ18O values of ca. 9–20‰, and also appears to rule out them being partial melts of hydrothermally altered gabbros from the slab interior, which typically have δ18O values of ca. 2–5‰. One explanation of this result is that adakites are mixtures of partial melts from several different parts of the slab, so that higher- and lower-δ18O components average out to have no net difference from average mantle. Alternatively, adakites might be initially generated with more extreme δ18O values, but undergo isotopic exchange with the mantle wedge before eruption. Finally, adakites might not be slab melts at all, and instead come from differentation and/or partial melting processes near the base of the arc crust in the over-riding plate. High-Mg andesites and Setouchi lavas are commonly higher in δ18O than equilibrium with the mantle, consistent with their containing variable amounts of partial melts of subducted sediments (as we conclude for Setouchi lavas), slab-derived aqueous fluid (as we conclude for the Cascades) and/or crustal contaminants from the over-riding plate (as we conclude for Kamchatka).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-10-23
    Description: Western Aleutian seafloor lavas define a highly calc-alkaline series, with Mg numbers (Mg#, Mg/Mg+Fe) greater than 0.65 in dacitic lavas with 2-4% MgO at 63-70% SiO2. These lavas have uniformly radiogenic Hf and Nd and variable, but relatively unradiogenic, Sr and Pb, at the MORB-like end of the spectrum of island-arc lavas. Andesites and dacites have high Sr 〉1000 ppm, fractionated trace element patterns (Sr/Y=50-350, La/Yb=8-35, Dy/Yb=2-3.5), and low relative abundances of Nb and Ta (La/Ta=100-300), consistent with an enhanced role for residual or cumulate garnet + rutile. MORB-like isotope compositions and high MgO and Mg# relative to silica, rule out an origin for the andesites and dacites by fractional crystallization from basalt, except perhaps, by a process of melt-rock reaction with peridotite. The most fractionated trace element patterns are in western seafloor rhyodacites (69-70% SiO2), which were dredged from volcanic cones built on Bering Sea oceanic lithosphere, where the crust is probably no more than 10 km thick, and so unlikely to produce garnet during crustal melting. We interpret the western seafloor andesites and dacites to have been produced by melting of subducted MORB-like basalt in the eclogite facies, followed by interaction of the resulting high-silica melt with mantle peridotite. This interpretation is consistent with the tectonic setting in the western Aleutians, which is dominated by oblique convergence, capable of producing a relatively hot subducting plate. Western seafloor lavas define an end-member composition with MORB-like isotope compositions and fractionated trace element ratios, which falls at the end of the continuum of compositions for all Aleutian lavas. The end-member character of western seafloor lavas is clearest in plots highlighting their radiogenic Hf, Nd and strong relative depletions in Ta and Yb. The western seafloor lavas also define an end-member composition for Pb isotopes Some western seafloor samples have high Nd/Hf, as required by Hf-Nd mixing scenarios, which indicate that a source component with radiogenic Hf and Nd and Nd/Hf greater than ~8, is present in lavas throughout the Aleutian arc (Brown et al., 2005 Fall AGU). Abundances of radiogenic Nd and Hf in the eclogite-melt component are relatively high, and so offset the unradiogenic Hf and Nd from subducted sediment. The result is a source mixture with much higher contributions of both subducted basalt and subducted sediment relative to the mantle end-member, than is produced when these elements are modeled as binary mixtures of mantle and sediment.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
  • 15
    facet.materialart.
    Unknown
    In:  [Talk] In: Goldschmidt Conference 2019, 18.-23.08.2019, Barcelona, Spain .
    Publication Date: 2019-10-17
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-01-24
    Description: Discovery of seafloor volcanism west of Buldir Volcano, the westernmost emergent volcano in the Aleutian arc, demonstrates that surface expression of active Aleutian volcanism falls below sea level just west of 175·9°E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. Lavas dredged from newly discovered seafloor volcanoes up to 300 km west of Buldir have end-member geochemical characteristics that provide new insights into the role of subducted basalt as a source component in Aleutian magmas. Western Aleutian seafloor lavas define a highly calc-alkaline series with 50–70% SiO2. Most samples have Mg-numbers [Mg# = Mg/(Mg + Fe)] greater than 0·60, with higher MgO and lower FeO* compared with average Aleutian volcanic rocks at all silica contents. Common basalts and basaltic andesites in the series are primitive, with average Mg# values of 0·67 (±0·02, n = 99, 1SD), and have Sr concentrations (423 ± 29 ppm, n = 99) and La/Yb ratios (4·5 ± 0·4, n = 29) that are typical of island arc basaltic lavas. A smaller group of basaltic samples is more evolved and geochemically more enriched, with higher and more variable Sr and La/Yb (average Mg# = 0·61 ± 0·1, n = 31; Sr = 882 ± 333 ppm, n = 31; La/Yb = 9·1 ± 0·9, n = 16). None of the geochemically enriched basalts or basaltic andesites has low Y (〈15 ppm) or Yb (〈1·5 ppm), so none show the influence of residual or cumulate garnet. In contrast, most western seafloor andesites, dacites and rhyodacites have higher Sr (〉1000 ppm) and are adakitic, with strongly fractionated trace element patterns (Sr/Y = 50–350, La/Yb = 8–35, Dy/Yb = 2·0–3·5) with low relative abundances of Nb and Ta (La/Ta 〉 100), consistent with an enhanced role for residual or cumulate garnet + rutile. All western seafloor lavas have uniformly radiogenic Hf and Nd isotopes, with εNd = 9·1 ± 0·3 (n = 31) and εHf = 14·5 ± 0·6 (n = 27). Lead isotopes are variable and decrease with increasing SiO2 from basalts with 206Pb/204Pb = 18·51 ± 0·05 (n = 11) to dacites and rhyodacites with 206Pb/204Pb = 18·43 ± 0·04 (n = 18). Western seafloor lavas form a steep trend in 207Pb/204Pb–206Pb/204Pb space, and are collinear with lavas from emergent Aleutian volcanoes, which mostly have 206Pb/204Pb 〉 18·6 and 207Pb/204Pb 〉 15·52. High MgO and Mg# relative to silica, flat to decreasing abundances of incompatible elements, and decreasing Pb isotope ratios with increasing SiO2 rule out an origin for the dacites and rhyodacites by fractional crystallization. The physical setting of some samples (erupted through Bering Sea oceanic lithosphere) rules out an origin for their garnet + rutile trace element signature by melting in the deep crust. Adakitic trace element patterns in the dacites and rhyodacites are therefore interpreted as the product of melting of mid-ocean ridge basalt (MORB) eclogite in the subducting oceanic crust. Western seafloor andesites, dacites and rhyodacites define a geochemical end-member that is isotopically like MORB, with strongly fractionated Ta/Hf, Ta/Nd, Ce/Pb, Yb/Nd and Sr/Y. This eclogite component appears to be present in lavas throughout the arc. Mass-balance modeling indicates that it may contribute 36–50% of the light rare earth elements and 18% of the Hf that is present in Aleutian volcanic rocks. Close juxtaposition of high-Mg# basalt, andesite and dacite implies widely variable temperatures in the western Aleutian mantle wedge. A conceptual model explaining this shows interaction of hydrous eclogite melts with mantle peridotite to produce buoyant diapirs of pyroxenite and pyroxenite melt. These diapirs reach the base of the crust and feed surface volcanism in the western Aleutians, but are diluted by extensive melting in a hotter mantle wedge in the eastern part of the arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  [Poster] In: KALMAR - Second Bilateral Workshop on Russian-German Cooperation on Kurile-Kamchatka and Aleutean Marginal Sea-Island Arc Systems, 16.05.-20.05.2011, Trier . KALMAR - Kurile-Kamchatka-Aleutean Marginal Sea - Island Systems : Program and Abstracts ; Workshop in Russian-German Cooperation, May 16 - 20, 2011 Trier, Germany ; pp. 100-102 .
    Publication Date: 2020-11-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  [Talk] In: 7. Biennial Workshop on Japan-Kamchatka-Alaska Subduction Processes: Mitigating Risk through International Volcano, Earthquake, and Tsunami Science (JKASP-2011), 25.-30.08.2011, Petropavlovsk-Kamchatsky, Russia .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...