ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-02-01
    Description: Volcanic activity in and around the year 536 CE led to severe cold and famine, and has been speculatively linked to large-scale societal crises around the globe. Using a coupled aerosol-climate model, with eruption parameters constrained by recently re-dated ice core records and historical observations of the aerosol cloud, we reconstruct the radiative forcing resulting from a sequence of two major volcanic eruptions in 536 and 540 CE. We estimate that the decadal-scale Northern Hemisphere (NH) extra-tropical radiative forcing from this volcanic “double event” was larger than that of any period in existing reconstructions of the last 1200 years. Earth system model simulations including the volcanic forcing show peak NH mean temperature anomalies reaching more than −2 °C, and show agreement with the limited number of available maximum latewood density temperature reconstructions. The simulations also produce decadal-scale anomalies of Arctic sea ice. The simulated cooling is interpreted in terms of probable impacts on agricultural production in Europe, and implies a high likelihood of multiple years of significant decreases in crop production across Scandinavia, supporting the theory of a connection between the 536 and 540 eruptions and evidence of societal crisis dated to the mid-6th century.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-01-08
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    EDP Sciences
    In:  In: Earth's climate response to a changing sun. EDP Sciences, Les Ulis Cedex A, France, pp. 247-253. ISBN 978-2-7598-1733-7
    Publication Date: 2015-12-09
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  [Paper] In: Statusseminar Meeresforschung mit FS SONNE 2015, 12.-13.02.2015, Bremen . Tagungsband Statusseminar Meeresforschung mit FS SONNE 2015 ; pp. 230-233 .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  [Poster] In: The Lübeck Retreat, Collaborative Research SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters, 23.-25.05.2012, Lübeck, Germany . The Lübeck Retreat, Collaborative Research SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters: final colloquium of SFB 574; May 23-25, 2012: program & abstracts ; p. 33 .
    Publication Date: 2012-09-11
    Description: aerosol microphysics are used to assess the influence of season of eruption on the aerosol evolution and radiative impacts at the Earth's surface (Toohey et al., 2011). This analysis is presented for eruptions with SO2 injection magnitudes of 17 and 700 Tg, the former consistent with estimates of the 1991 Mt. Pinatubo eruption, the later with estimates of the Los Chocoyos eruption of 84 ka BP from modern-day Guatemala. For each eruption magnitude, simulations are performed with eruptions at the location of the Los Chocoyos eruption site (15° N, 91° W) at four equally spaced times of year. Sensitivity to eruption season of aerosol optical depth (AOD), clear-sky and all-sky shortwave (SW) radiative flux is quantified based on the difference between the maximum and minimum response from the four eruption seasons. Eruption season has a significant influence on AOD and clear-sky SW radiative flux anomalies for both eruption magnitudes, reaching maximum values of ~75 %. All-sky SW anomalies are found to be sensitive to season of eruption for the Los Chocoyos eruption magnitude, but insensitive to season of eruption for the Pinatubo-magnitude eruption experiment. Our estimates of sensitivity to eruption season are larger than previously reported estimates: implications regarding volcanic AOD timeseries reconstructions and their use in climate models are discussed.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  [Poster] In: The Lübeck Retreat, Collaborative Research SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters, 23.-25.05.2012, Lübeck . The Lübeck Retreat: final colloquium of SFB 574; May 23-25, 2012: program & abstracts ; p. 19 .
    Publication Date: 2012-09-11
    Description: Using an Earth System Model, we investigate the potential Southern Hemisphere (SH) climate response to an extremely large volcanic eruption. The volcanic radiative forcing is calculated offline with a global aerosol model taken into account the formation and development of the volcanic aerosol size distribution from an initial stratospheric injection of 700 Mt SO2 corresponding to that estimated for the VEI〉7 volcanic eruption of Los Chocoyos in Guatemala 84 ka BP. Due to the extremely large volcanic radiative forcing, the surface cools over almost the entire SH. A significant positive phase of the Southern Annual Mode (SAM), persisting for at least 12 months, characterizes the simulated posteruption SH atmospheric circulation. Significant changes of surface temperature, precipitation and wind fields result from a distinct increase in magnitude and poleward movement in position of the SH westerlies. This is associated with temporary modifications in the upper ocean circulation in the Antarctic Circumpolar Current region. Due to the propagation of the forced anomalies into the deep ocean layers, the anomalous oceanic state persists well beyond the atmospheric response timescale. Significant negative temperature anomalies in the SH ocean propagate down to ~2000 m during the first ~20-50 post-eruption years, and persist for the entire simulated 200 years. A multicentennial anomaly in the SH ocean heat content represents the longest lived volcanically-forced signal detectable in the simulated climate.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-02-06
    Description: We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  [Poster] In: IGAC/SPARC Global Chemistry-Climate Modeling and Evaluation Workshop, 21.-24.05.2012, Davos, Switzerland .
    Publication Date: 2012-12-14
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  [Poster] In: 3. International Conference on Earth System Modelling (ICESM), 17.-21.09.2012, Hamburg, Germany .
    Publication Date: 2012-12-14
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Atmospheres, 121 (10). pp. 5281-5297.
    Publication Date: 2019-04-04
    Description: The current generation of Earth system models that participate in the Coupled Model Intercomparison Project phase 5 (CMIP5) does not, on average, produce a strengthened Northern Hemisphere (NH) polar vortex after large tropical volcanic eruptions as suggested by observational records. Here we investigate the impact of volcanic eruptions on the NH winter stratosphere with an ensemble of 20 model simulations of the Max Planck Institute Earth system model. We compare the dynamical impact in simulations of the very large 1815 Tambora eruption with the averaged dynamical response to the two largest eruptions of the CMIP5 historical simulations (the 1883 Krakatau and the 1991 Pinatubo eruptions). We find that for both the Tambora and the averaged Krakatau-Pinatubo eruptions the radiative perturbation only weakly affects the polar vortex directly. The position of the maximum temperature anomaly gradient is located at approximately 30°N, where we obtain significant westerly zonal wind anomalies between 10hPa and 30hPa. Under the very strong forcing of the Tambora eruption, the NH polar vortex is significantly strengthened because the subtropical westerly wind anomalies are sufficiently strong to robustly alter the propagation of planetary waves. The average response to the eruptions of Krakatau and Pinatubo reveals a slight strengthening of the polar vortex, but individual ensemble members differ substantially, indicating that internal variability plays a dominant role. For the Tambora eruption the ensemble variability of the zonal mean temperature and zonal wind anomalies during midwinter and late winter is significantly reduced compared to the volcanically unperturbed period.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...