ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019
    Description: In this paper, we present a method for hyperspectral retrieval using multispectral satellite images. The method consists of the use of training spectral data with a compressive capability. By using principal component analysis (PCA), a proper number of basis vectors are extracted. These vectors are properly combined and weighted by the sensors’ responses from visible MODIS channels, achieving as a result the retrieval of hyperspectral images. Once MODIS channels are used for hyperspectral retrieval, the training spectra are projected over the recovered data, and the ground-based process used for training can be reliably detected. To probe the method, we use only four visible images from MODIS for large-scale ash clouds’ monitoring from volcanic eruptions. A high-spectral resolution data of reflectances from ash was measured in the laboratory. Using PCA, we select four basis vectors, which combined with MODIS sensors responses, allows estimating hyperspectral images. By comparing both the estimated hyperspectral images and the training spectra, it is feasible to identify the presence of ash clouds at a pixel-by-pixel level, even in the presence of water clouds. Finally, by using a radiometric model applied over hyperspectral retrieved data, the relative concentration of the volcanic ash in the cloud is obtained. The performance of the proposed method is compared with the classical method based on temperature differences (using infrared MODIS channels), and the results show an excellent match, outperforming the infrared-based approach. This proposal opens new avenues to increase the potential of multispectral remote systems, which can be even extended to other applications and spectral bands for remote sensing. The results show that the method could play an essential role by providing more accurate information of volcanic ash spatial dispersion, enabling one to prevent several hazards related to volcanic ash where volcanoes’ monitoring is not feasible.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019
    Description: At present, university campuses integrate technologies such as the internet of things, cloud computing, and big data, among others, which provide support to the campus to improve their resource management processes and learning models. Integrating these technologies into a centralized environment allows for the creation of a controlled environment and, subsequently, an intelligent environment. These environments are ideal for generating new management methods that can solve problems of global interest, such as resource consumption. The integration of new technologies also allows for the focusing of its efforts on improving the quality of life of its inhabitants. However, the comfort and benefits of technology must be developed in a sustainable environment where there is harmony between people and nature. For this, it is necessary to improve the energy consumption of the smart campus, which is possible by constantly monitoring and analyzing the data to detect any anomaly in the system. This work integrates a big data framework capable of analyzing the data, regardless of its format, providing effective and efficient responses to each process. The method developed is generic, which allows for its application to be adequate in addressing the needs of any smart campus.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...